AMC 10

2002

P

-1	This test and the matching AMC 12P were developed for the use of a group of Taiwar
	schools, in early January of 2002. When Taiwan had taken the contests, the AMC released
	the questions here as a set of practice questions for the 2002 AMC 10 and AMC 12 contests

1 The ratio $\frac{(2^4)^8}{(4^8)^2}$ equals

(A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) 1 (D) 2

(E) 8

2 The sum of eleven consecutive integers is 2002. What is the smallest of these integers?

(A) 175

(B) 177

(C) 179

(D) 180

(E) 181

3 Mary typed a six-digit number, but the two 1s she typed didn't show. What appeared was 2002. How many different six-digit numbers could she have typed?

(A) 4

(B) 8

(C) 10

(D) 15

(E) 20

4 Which of the following numbers is a perfect square?

(A) $4^45^56^6$

(B) $4^45^66^5$

(C) $4^55^46^6$

(D) $4^65^46^5$ (E) $4^65^56^4$

5 Let $(a_n)_{n\geq 1}$ be a sequence such that $a_1=1$ and $3a_{n+1}-3a_n=1$ for all $n\geq 1$. Find a_{2002} .

(A) 666

(B) 667

(C) 668

(D) 669

|6| The perimeter of a rectangle is 100 and its diagonal has length x. What is the area of this rectangle?

(A) $625 - x^2$

(B) $625 - \frac{x^2}{2}$ **(C)** $1250 - x^2$ **(D)** $1250 - \frac{x^2}{2}$ **(E)** $2500 - \frac{x^2}{2}$

7 The dimensions of a rectangular box in inches are all positive integers and the volume of the box is 2002 in³. Find the minimum possible sum in inches of the three dimensions.

(A) 36

(B) 38

(C) 42

(D) 44

8 How many ordered triples of positive integers (x, y, z) satisfy $(x^y)^z = 64$?

(A) 5

(B) 6

(C) 7

(D) 8

9 The function f is given by the table

x	1	2	3	4	5
f(x)	4	1	3	5	2

https://ivyleaguecenter.wordpress.com/

Tel: 301-922-9508

Email: chiefmathtutor@gmail.com

AMC 10

2002

If $u_0 = 4$ and $u_{n+1} = f(u_n)$ for $n \ge 0$, find u_{2002} .

- (A) 1
- **(B)** 2
- (C) 3
- (D) 4
- (E) 5

10 Let a and b be distinct real numbers for which

$$\frac{a}{b} + \frac{a + 10b}{b + 10a} = 2.$$

Find $\frac{a}{b}$.

- (A) 0.6
- **(B)** 0.7
- (C) 0.8
- (D) 0.9
- (E) 1

11 Let $P(x) = kx^3 + 2k^2x^2 + k^3$. Find the sum of all real numbers k for which x - 2 is a factor

- (A) 8
- **(B)** -4
- (\mathbf{C}) 0
- **(D)** 5
- (E) 8

12 For $f_n(x) = x^n$ and $a \neq 1$ consider

- I. $(f_{11}(a)f_{13}(a))^{14}$
- II. $f_{11}(a)f_{13}(a)f_{14}(a)$
- III. $(f_{11}(f_{13}(a)))^{14}$
- IV. $f_{11}(f_{13}(f_{14}(a)))$

Which of these equal $f_{2002}(a)$?

- (A) I and II only
- (B) II and III only
- (C) III and IV only
- (**D**) II, III, and IV only
- (E) all of them

13 Participation in the local soccer league this year is 10% higher than last year. The number of males increased by 5% and the number of females increased by 20%. What fraction of the soccer league is now female?

- (A) $\frac{1}{3}$ (B) $\frac{4}{11}$ (C) $\frac{2}{5}$ (D) $\frac{4}{9}$ (E) $\frac{1}{2}$

14 The vertex E of a square EFGH is at the center of square ABCD. The length of a side of ABCD is 1 and the length of a side of EFGH is 2. Side EF intersects CD at I and EHintersects AD at J. If angle $EID = 60^{\circ}$, the area of quadrilateral EIDJ is

- (A) $\frac{1}{4}$ (B) $\frac{\sqrt{3}}{6}$ (C) $\frac{1}{3}$ (D) $\frac{\sqrt{2}}{4}$ (E) $\frac{\sqrt{3}}{2}$

15 What is the smallest integer n for which any subset of $\{1, 2, 3, \dots, 20\}$ of size n must contain two numbers that differ by 8?

- (A) 2
- **(B)** 8
- (C) 12
- **(D)** 13
- **(E)** 15

https://ivyleaguecenter.wordpress.com/

Tel: 301-922-9508

Email: chiefmathtutor@gmail.com

- (A) $\sqrt{13}$
- **(B)** $\sqrt{14}$
- (C) $\sqrt{15}$
- **(D)** 4 **(E)** $\sqrt{17}$

17 There are 1001 red marbles and 1001 black marbles in a box. Let P_s be the probability that two marbles drawn at random from the box are the same color, and let P_d be the probability that they are different colors. Find $|P_s - P_d|$.

- (A) 0

- (B) $\frac{1}{2002}$ (C) $\frac{1}{2001}$ (D) $\frac{2}{2001}$ (E) $\frac{1}{1000}$

18 For how many positive integers n is $n^3 - 8n^2 + 20n - 13$ a prime number?

- (C) 3
- (D) 4
- (E) more than 4

19 If a, b, c are real numbers such that $a^2 + 2b = 7$, $b^2 + 4c = -7$, and $c^2 + 6a = -14$, find $a^2 + b^2 + c^2$.

- (A) 14
- (B) 21
- (C) 28
- (D) 35
- (E) 49

20 How many three-digit numbers have at least one 2 and at least one 3?

- (A) 52
- **(B)** 54
- (C) 56
- **(D)** 58
- (E) 60

21 Let f be a real-valued function such that

$$f(x) + 2f\left(\frac{2002}{x}\right) = 3x$$

for all x > 0. Find f(2).

- (A) 1000
- **(B)** 2000
- (C) 3000
- **(D)** 4000
- (E) 6000

22 In how many zeroes does the number $\frac{2002!}{(1001!)^2}$ end?

- (A) 0
- **(B)** 1
- (C) 2
- **(D)** 200

23 Let

$$a = \frac{1^2}{1} + \frac{2^2}{3} + \frac{3^2}{5} + \dots + \frac{1001^2}{2001}$$

and

$$b = \frac{1^2}{3} + \frac{2^2}{5} + \frac{3^2}{7} + \dots + \frac{1001^2}{2003}.$$

Find the integer closest to a - b.

- (A) 500
- **(B)** 501
- (C) 999
- **(D)** 1000
- **(E)** 1001

AMC 10 2002

What is the maximum value of n for which there is a set of distinct positive integers k_1, k_2, \ldots, k_n for which

$$k_1^2 + k_2^2 + \ldots + k_n^2 = 2002?$$

- (A) 14
- **(B)** 15
- (C) 16
- (D) 17
- **(E)** 18
- Under the new AMC 10, 12 scoring method, 6 points are given for each correct answer, 2.5 points are given for each unanswered question, and no points are given for an incorrect answer. Some of the possible scores between 0 and 150 can be obtained in only one way, for example, the only way to obtain a score of 146.5 is to have 24 correct answers and one unanswered question. Some scores can be obtained in exactly two ways; for example, a score of 104.5 can be obtained with 17 correct answers, 1 unanswered question, and 7 incorrect, and also with 12 correct answers and 13 unanswered questions. There are three scores that can be obtained in exactly three ways. What is their sum?
 - (A) 175
- **(B)** 179.5
- (C) 182
- **(D)** 188.5
- **(E)** 201

2002 AMC 10P Answer Key

- 1. (C)
- 2. (B)
- 3. (D)
- 4. (C)
- 5. (C)
- 6. (D)
- 7. (B)
- 8. (E)
- 9. (B)
- 10.(C)
- 11.(A)
- 12.(C)
- 13.(B)
- 14.(A)
- 15.(D)
- 16.(D)
- 17.(C)
- 18.(C)
- 19.(A)
- 20.(A)
- 21.(B)
- 22.(B)
- 23.(B)
- 24.(D)
- 25.(D)

https://ivyleaguecenter.wordpress.com/

Tel: 301-922-9508

Email: chiefmathtutor@gmail.com