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Ladies and Gentlemen,

It is a great honor to be invited to address you here,
but one which is fraught with difficulties. First, there
is a rather natural reluctance for a practicing mathe-
matician to philosophize about mathematics instead of
just giving a mathematical talk. As an illustration, the
English mathematician G. Hardy called it a “melan-
choly experience” to write about mathematics rather
than just prove theorems! However, had I not sur-
mounted that feeling, I wouldn’t be here, so I need
not dwell on it any more. More serious difficulties arise
from the fact that there are mathematicians and non-
mathematicians in the audience. Whether one should
conclude from this that my talk is best suited for an
empty audience is a question which every one of you
will have answered within the next hour and therefore
needs no further elaboration. The difficulty brought
about by the presence of mathematicians here is that
it makes me aware, almost painfully aware, that in fact
everything about my topic has already been said, all
arguments have already been presented and argued
pro and con: Mathematics is only an art, or only a
science, the queen of sciences, merely a servant of sci-
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ence, or even art and science combined. The very sub-
ject of my address, in Latin Mathesis et Ars et Scientia
Dicenda appeared as the third topic in the defense of a
dissertation in the year 1845. The opponent claimed it
was only art, but not science [1]. It has occasionally
been maintained that mathematics is rather trivial, al-
most tautological, and as such certainly unworthy of
being regarded either as art or as science [2]. Most
arguments can be supported by many references to
outstanding mathematicians. It is even possible some-
times, by selective citation, to attribute widely dif-
ferent opinions to one and the same mathematician.
So I would like to emphasize at the outset that the
professional mathematicians assembled here are un-
likely to hear anything new.

If I turn to the nonmathematicians, however, 1 en-
counter a much bigger, almost opposite problem: My
task is to say something about the essence, the nature
of mathematics. In so doing, however, I cannot as-
sume that the object of my statements is common
knowledge. Of course, I can presuppose a certain fa-
miliarity with Greek mathematics, Euclidean geom-
etry, for example, perhaps the theory of conic sections,
or even the rudiments of algebra or analytical geom-
etry. But they have little to do with the object of
present-day mathematical research: Starting from this
more or less familiar ground, mathematicians have
gone on to develop ever more abstract theories, which
have less and less to do with everyday experience,
even when they later find important applications in
the natural sciences. The transition from one level of
abstraction to the next was often very difficult even for
the best mathematicians and represented at the time
an extremely bold step. I couldn’t possibly give a sat-
isfactory survey of this accumulation of abstractions
upon abstractions and of their applications in just a
few minutes. Still I would feel quite uncomfortable
simply to philosophize about mathematics without
saying anything specific on its contents. I would also
like to have a small supply of examples at hand to
be able to illustrate general statements about math-
ematics or the position of mathematics with respect to
art and natural sciences. I shall therefore attempt to
describe, or at least to give an idea of, some such steps.
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In doing so I will not be able to define precisely all my
terms and I don’t expect full understanding by all. But
that is not essential. What I want to communicate is
really just a feeling for the nature of these transitions,
perhaps even for their boldness and significance in the
history of thought. And I promise not to spend any
more than 20 minutes doing so.

A mathematician often aims for general solutions.
He enjoys solving many special problems with a few
general formulae. One can call this economy of
thought or laziness. An age-old exampie is the solution
to a second-degree equation, say

X2+2x+c=0

Here b and c are given real numbers. We are looking
for a real number x that will satisfy this equation. For
centuries it has been known that x can be expressed
in terms of b and c by the formula

x=-bx V¥ -
If b2 > ¢, we can take the square root and get two
solutions. If b> = ¢, then x = —bis said to be a double

solution. If b? < ¢, however, then we cannot take the
square root and maintain, at least at the beginning
secondary school level, that there is no solution.

In the sixteenth century similar formulas were de-
vised for third- and even fourth-degree equations,
such as the equation

B+ax+b=0

I won’t write the formula out. It contains square roots
and cube roots, so-called radicals. But an extremely
interesting phenomenon was discovered that came to
be called the casus irreducibilis. If this equation has
three distinct real solutions and we apply the formula,
which allows one in principle to compute them, then
we meet square roots of negative numbers; at the
outset these are meaningless. If we ignore the fact that
they don’t exist, however, and are not afraid to com-
pute with them, then they cancel out and we get the
solutions, provided we carefully follow certain formal
rules. In short, starting from the given real numbers
a,b, we arrive at the sought for ones by using “nonreal
numbers”. The square roots of negative numbers were
called “imaginary numbers” to distinguish them from
the real numbers, and controversies raged as to
whether it was actually legitimate to use such nonreal
numbers; Descartes, for example, did not want to have
anything to do with them. Only around the year 1800
was a satisfactory solution—satisfactory for some at
least—to this problem found. The real numbers are
imbedded in a bigger system consisting of the points
of the plane, i.e., pairs of real numbers, between
which one defines certain operations which have the
same formal properties as the four basic operations in
arithmetic. The real numbers are identified with the
points on the horizontal axis, and the square roots of
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negative numbers with those on the vertical axis. One
then began to speak of complex (or imaginary) num-
bers. Formally we can use these mathematical objects
almost as easily as the real numbers and can obtain
solutions which are sometimes real, sometimes com-
plex. For the second-degree equation mentioned ear-
lier we can now say that there are two complex solu-
tions if ¥? < c.

To a certain extent this is, of course, merely a con-
vention, but it wasn’t easy to grant to these complex
numbers the same right to existence as to real numbers
and not to regard them as a mere tool for arriving at
real numbers. There was no strict definition of real
numbers back then, but the close connection between
mathematics and measurement or practical computa-
tion gave real numbers a certain reality in spite of the
difficulties with irrational and negative numbers. It
wasn’t the same with complex numbers, however.
That was a step in an entirely new direction, bringing
a purely intellectual creation to the fore. As mathe-
maticians became used to this new step, they began
to realize that many operations performed with func-
tions such as polynomials, trigonometric functions,
etc., still made sense when complex values were ac-
cepted as arguments and as values. This marked the
beginning of complex analysis or function theory. As
early as 1811, the mathematician Gauss pointed out
the necessity of devising such a theory for its own
sake:

The point here is not practical utility, rather for me analysis is an
independent science which would lose an extraordinary amount of

beauty and roundness by discriminating against those fictitious
quantities [3].

Apparently even he did not foresee the practical rele-
vance complex analysis was later to achieve, as in the
theory of electricity or in aerodynamics, for example.

But that is not the end of it. Allow me, if you will,
to mention two further steps toward greater abstrac-
tion. Let us return to our second-degree equation. One
can now say that it has, in general, two solutions
which may be complex numbers. Similarly, an equa-
tion of the n-th degree has n solutions if one accepts
complex numbers. From the Sixteenth Century on,
people wondered whether there also was a general
formula which would express the solutions of an equa-
tion of degree at least five from the coefficients by
means of radicals. It was finally proved to be impos-
sible. One proof (chronologically the third) was given
by the French mathematician E. Galois within the
framework of a more general theory which was not
understood at the time and subsequently forgotten.
Some 15 years later his work was rediscovered and
understood only with great difficulty by a very few,
so new was his viewpoint. Given an equation, Galois
considered a certain set of permutations of the roots
and showed that certain properties of this set of per-
mutations are decisive. That was the beginning of an



independent study of such sets of permutations which
later came to be known as Galois groups. He showed
that an equation is solvable by means of radicals only
when the groups involved belong to a certain class;
namely, the solvable groups, as they came to be called.
The theorem mentioned earlier, regarding equations
of degree at least five, is then a consequence of the
fact that the group associated to a general equation of
the n-th degree is solvable only whenn = 1, 2, 3, 4 [4].
The important properties of such groups, for instance
to be solvable, are actually independent of the nature
of the objects to be permuted, and this led to the idea
of an “abstract group” and to theorems of great sig-
nificance, applicable in many areas of mathematics.
But for many years this appeared to be nothing more
than pure and very abstract mathematics. As a math-
ematician and a physicist were discussing the curric-
ulum for physics at Princeton University around the
year 1910, the physicist said they could no doubt leave
out group theory, for it would never be applicable to
physics [5]. Not 20 years later, three books on group
theory and quantum mechanics appeared, and since
then groups have been fundamental in physics as well.

The following will serve as a final example. I said
earlier that we can consider complex numbers to be
points in the plane. An Irish mathematician, N. R.
Hamilton, wondered whether one could define an an-
alogue of the four basic operations among the points
of three-dimensional space, thus forming an even
more comprehensive number system. It took him
about 10 years to find the answer: It is not possible in
three-dimensional space, but it is in four-dimensional
space. We do not need to try to imagine just what four-
dimensional space is here. It is simply a figure of
speech for quadruples of real numbers instead of tri-
ples or pairs of real numbers. He called these new
numbers quaternions. He did, however, have to do
without one property of real or complex numbers
which up until then had been taken for granted: com-
mutativity in multiplication, i.e., 2 X b = b X 4. He
also showed that the calculus with quaternions had
applications in the mathematical treatment of ques-
tions in physics and mechanics. Later, many other al-
gebraic systems with a noncommutative product were
defined, notably matrix algebras. This also appeared
to be an entirely abstract form of mathematics, without
connections to the outside world. In 1925, however,
as Max Born was thinking about some new ideas of
W. Heisenberg’s, he discovered that the most appro-
priate formalism for expressing them was none other
than matrix algebra, and this suggested that physical
quantities be represented by means of algebraic objects
which do not necessarily commute. This led to the
uncertainty principle and was the beginning of matrix
quantum mechanics, of the assignment of operators to
physical quantities, which is at the basis of quantum
mechanics [6].

With this last example I shall end my attempts to
describe some mathematical topics. The examples are,
of course, extremely incomplete and not at all repre-
sentative of all areas of mathematics. They do have
two properties in common, however, which I would
like to emphasize since they are valid in a great many
cases. First of all, these developments lead in the di-
rection of ever greater abstraction, further and further
away from nature. Second, abstract theories actually
developed for their own sake have found important
applications in the natural sciences. The suitability of
mathematics to the needs of the natural sciences is in
fact astonishingly great (one physicist spoke once of
the “unreasonable effectiveness of mathematics” [7])
and is worthy of a far more detailed discussion than I
can afford to enter into here.

The transition to ever greater abstraction is not to be
taken for granted, as you may have gathered from
Gauss’ quotation. Mathematics was originally devel-
oped for practical purposes such as bookkeeping, mea-
surements, and mechanics; even the great discoveries
of the Seventeenth Century, such as infinitesimal and
integral calculus, were at first primarily tools for
solving problems in mechanics, astronomy, and
physics. The mathematician Euler, who was active in
all areas of mathematics and its applications—in-
cluding shipbuilding—also wrote papers on pure
number theory and more than once felt the need to
explain that it was as justified and important as more
practically oriented work [8]. Mathematics was from
the very beginning, of course, a kind of idealization,
but for a long time was not as far removed from reality
or, more precisely, from our perception of reality, as
in the examples mentioned earlier. As mathematicians
went further in this direction, they became increas-
ingly aware that a mathematical concept has a right to
existence as soon as it has been defined in a logically
consistent manner, without necessarily having a con-
nection with the physical world; and that they had the
right to study it even when there seemed to be no
practical applications at hand. In short, this led more
and more to “Pure Mathematics” or “Mathematics for
Its Own Sake”.

But if one leaves out the controlling function of prac-
tical applicability, the question immediately arises as
to how one can make value judgments. Surely not all
concepts and theorems are equal; as in G. Orwell’s
Animal Farm, some must be more so than others. Are
there then internal criteria which can lead to a more
or less objective hierarchy? You will notice that the
same basic question can be asked about painting,
music, or art in general: It thus becomes a question of
aesthetics. Indeed, a usual answer is that mathematics
is to a great extent an art, an art whose development
has been derived from, guided by, and judged ac-
cording to aesthetic criteria. For the lay person it is
often surprising to learn that one can speak of aesthetic
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criteria in so grim a discipline as mathematics. But this
feeling is very strong for the mathematician, even
though it is difficult to explain: What are the rules of
this aesthetic? Wherein lies the beauty of a theorem,
of a theory? Of course there is no one answer that will
satisfy all mathematicians, but there is a surprising de-
gree of agreement, to a far greater extent, I think, than
exists in music or painting.

Without wishing to maintain that I can explain this
fully, I would like to attempt to say a bit more about
it later. At the moment I shall content myself with the
assertion that the analogy with art is one with which
many mathematicians agree. For example, G. H.
Hardy was of the opinion that, if mathematics has any
right to exist at all, then it is only as art [9]. Our activity
has much in common with that of an artist: A painter
combines colors and forms, a musician tones, a poet
words, and we combine ideas of a certain sort. The
painter E. Degas wrote sonnets from time to time.
Once, in a conversation with the poet S. Mallarmé, he
complained that he found writing difficult even
though he had many ideas, indeed an overabundance
of ideas. Mallarmé answered that poems were made
of words, not ideas [10]. We, on the other hand, work
primarily with ideas.

This feeling of art becomes even stronger when one
thinks of how a researcher works and progresses: One
should not imagine that the mathematician operates
entirely logically and systematically. He often gropes
about in the dark, not knowing whether he should
attempt to prove or disprove a certain proposition, and
essential ideas often occur to him quite unexpectedly,
without his even being able to see a clear and logical
path leading to them from earlier considerations. Just
as with composers and artists one should speak of in-
spiration [11].

Other mathematicians, however, are opposed to this
view and maintain that an involvement with mathe-
matics without being guided by the needs of the nat-
ural sciences is dangerous and almost certainly leads
to theories which may be quite subtle and which may
provide the mind with a peculiar pleasure, but which
represent a kind of intellectual mirror that is com-
pletely worthless from the standpoint of science or
knowledge. For example, the mathematician J. von
Neumann wrote in 1947:

As a mathematical discipline travels far from its empirical sources,
or still more, if it is second and third generation only indirectly
inspired by ideas coming from “reality”, it is beset with very grave
dangers. It becomes more and more purely aestheticizing, more and
more purely 'art pour l'art . . . there is a great danger that the
subject will develop along the line of least resistance . . . will sep-
arate into a multitude of insignificant branches. . . .

In any event . . . the only remedy seems to me to be the reju-
venating return to the source: the reinjection of more or less directly
empirical ideas [12].

Still others have taken a more intermediate stance:
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They fully recognize the importance of the aesthetic
side of mathematics but feel that it is dangerous to
push mathematics for its own sake too far. Poincaré,
for example, had written earlier:

In addition to this it provides its disciples with pleasures similar to
painting and music. They admire the delicate harmony of the num-
bers and the forms; they marvel when a new discovery opens up to
them an unexpected vista; and does the joy that they feel not have
an aesthetic character even if the senses are not involved at all? . . .
For this reason 1 do not hesitate to say that mathematics deserves
to be cultivated for its own sake, and 1 mean the theories which
cannot be applied to physics just as much as the others [13].

But a few pages further on he returns to this compar-
ison and adds:

If I may be allowed to continue my comparison with the fine arts,
then the pure mathematician who would forget the existence of the
outside world could be likened to the painter who knew how to
combine colors and forms harmoniously, but who lacked models.
His creative power would soon be exhausted [14].

This denial of the possibility of abstract painting
strikes me as especially noteworthy since we are in
Munich, where, not much later, an artist would con-
cern himself quite deeply with this question, namely,
Wassily Kandinsky. It was sometime in the first de-
cade of this century that he suddenly felt, after looking
at one of his own canvases, that the subject can be
detrimental to the painting in that it may be an obstacle
to direct access to forms and colors; that is, to the ac-
tual artistic qualities of the work itself. But, as he wrote
later [15], “a frightening gap” (eine erschreckende Tiefe)
and a mass of questions confronted him, the most im-
portant of which was, “What should replace the
missing subject?”’ Kandinsky was fully aware of the
danger of ornamentation, of a purely decorative art,
and wanted to avoid it at all costs. Contrary to Poin-
caré, however, he did not conclude that painting
without a real subject had to be fruitless. In fact, he
even developed a theory of the “inner necessity’” and
“intellectual content”” of a painting. Since about 1910,
as you know, he and other painters in increasing num-
bers have dedicated themselves to so-called abstract or
pure painting which has little or nothing to do with
nature.

If one does not want to admit an analogous possi-
bility for mathematics, however, then one will be led
to a conception of mathematics which I would like to
summarize as follows: On the one hand, it is a science
because its main goal is to serve the natural sciences
and technology. This goal is actually at the origin of
mathematics and is constantly a wellspring of prob-
lems. On the other hand it is an art because it is pri-
marily a creation of the mind and progress is achieved
by intellectual means, many of which issue from the
depths of the human mind, and for which aesthetic
criteria are the final arbiters. But this intellectual



freedom to move in a world of pure thought must be
governed to some extent by possible applications in
the natural sciences.

However, this view is really too narrow, in partic-
ular the final clause is too limiting, and many mathe-
maticians have insisted on complete freedom of ac-
tivity. First of all, as was already pointed out, many
areas of mathematics which have proved important for
applications would not have been developed at all if
one had insisted on applicability from the beginning.
In spite of the above quotation, von Neumann himself
pointed this out in a later lecture:

But still a large part of mathematics which became useful developed
with absolutely no desire to be useful, and in a situation where
nobody could possibly know in what area it would become useful:
and there were no general indications that it even would be so. . . .
This is true of all science. Successes were largely due to forgetting
completely about what one ultimately wanted, or whether one
wanted anything ultimately; in refusing to investigate things which
profit, and in relying solely on guidance by criteria of intellectual
elegance. . . .

And I think it extremely instructive to watch the role of science
in everyday life, and to note how in this area the principle of laissez
faire has led to strange and wonderful results [16].

Second, and for me more important, there are areas
of pure mathematics which have found little or no ap-
plication outside mathematics, but which one cannot
help viewing as great achievements. I am thinking, for
example, of the theory of algebraic numbers, class field
theory, automorphic functions, transfinite numbers,
etc.

Let us return to the comparison with painting once
again and take as “subject” the problems which are
drawn from the physical world. Then we see that we
have painting drawn from nature as well as pure or
abstract painting.

This comparison is, however, not yet entirely satis-
factory, for such a description of mathematics would
not encompass all its essential aspects, in particular its
coherence and unity. Indeed, mathematics displays a
coherence which I feel is much greater than in art. As
a testimony to this, note that the same theorem is often
proved independently by mathematicians living in
widely separated locations, or that a considerable
number of papers have two, sometimes more, authors.
It can also happen that parts of mathematics which
were developed completely independently of one an-
other suddenly demonstrate deep-lying connections
under the impact of new insights. Mathematics is, to
a great extent, a collective undertaking. Simplifications
and unifications maintain the balance with unending
development and expansion; they display again and
again a remarkable unity even though mathematics is
far too large to be mastered by a single individual.

I think it would be difficult to account fully for this
by appealing solely to the criteria mentioned earlier—
namely, subjective ones like intellectual elegance and

beauty, and consideration of the needs of natural sci-
ences and technology. One is then led to ask whether
there are criteria or guidelines other than those. In my
opinion this is the case, and I would now like to com-
plete the earlier description of mathematics by looking
at it from a third standpoint and adding another es-
sential element to it. In preparation for this I would
like to digress, or at least apparently digress, and take
up the question, Does mathematics have an existence
of its own? Do we create mathematics or do we grad-
ually discover theories which exist somewhere inde-
pendently of us? If this is so, where is this mathemat-
ical reality located?

It is, of course, not absolutely clear that such a ques-
tion is really meaningful. But this feeling—that math-
ematics somehow, somewhere, preexists—is wide-
spread. It was expressed quite sharply, for example,
by G. H. Hardy:

1 believe that mathematical reality lies outside us, that our function
is to discover or observe it, and that the theorems which we prove,
and which we describe grandiloquently as our “creations”, are
simply our notes of our observations. This view has been held, in
one form or another by many philosophers of high reputation, from
Plato onwards. . . . [17].

If one is a believer, then one will see this preexistent
mathematical reality in God. This was actually the be-
lief of Hermite, who once said:

There exists, if I am not mistaken, an entire world which is the
totality of mathematical truths, to which we have access only with
our mind, just as a world of physical reality exists, the one like the
other independent of ourselves, both of divine creation [18].

It wasn’t too long ago that a colleague explained in
an introductory lecture that the following question had
occupied him for years: Why has God created the ex-
ceptional series?

But a reference to divine origin would hardly satisfy
the nonbeliever. Many do, however, have a vague
feeling that mathematics exists somewhere, even
though, when they think about it, they cannot escape
the conclusion that mathematics is exclusively a
human creation.

Such questions can be asked of many other concepts
such as state, moral values, religion, etc., and would
probably be worthy of consideration all by themselves.
But for want of time and competence, I shall have to
content myself with a short and possibly oversimpli-
fied answer to this apparent dilemma by agreeing with
the thesis that we tend to posit existence on all those
things which belong to a civilization or culture in that
we share them with other people and can exchange
thoughts about them. Something becomes objective
(as opposed to ‘“subjective”) as soon as we are con-
vinced that it exists in the minds of others in the same
form as it does in ours, and that we can think about it
and discuss it together [19]. Because the language of
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mathematics is so precise, it is ideally suited to de-
fining concepts for which such a consensus exists. In
my opinion, that is sufficient to provide us with a
feeling of an objective existence, of a reality of mathe-
matics similar to that mentioned by Hardy and Her-
mite above, regardless of whether it has another or-
igin, as Hardy and Hermite maintain. One could spec-
ulate forever on this last point, of course, but that is
actually irrelevant to the continuation of this discus-
sion.

Before I elaborate on this, I would like to note that
similar thoughts about our conception of physical
reality have been expressed. For example, Poincaré
wrote:

Our guarantee of the objectivity of the world in which we live is
the fact that we share this world with other sentient beings. . . .

That is therefore the first requirement of objectivity: That which
is objective must be common to more than one spirit and as a result
be transmittable from one to the other . . . [20].

and Einstein:

By the aid of speech different individuals can, to a certain extent,
compare their experiences. In this way it is shown that certain sense
perceptions of different individuals correspond to each other, while
for other sense perceptions no such correspondence can be estab-
lished. We are accustomed to regard as real those sense perceptions
which are common to different individuals, and which therefore are,
in a measure, impersonal [21].

Now back to mathematics. Mathematicians share an
intellectual reality, a gigantic number of mathematical
ideas, objects whose properties are partly known and
partly unknown, theories, theorems, solved and un-
solved problems, which they study with mental tools.
These problems and ideas are partially suggested by
the physical world; primarily, however, they arise
from purely mathematical considerations (such as
groups or quaternions to go back to my earlier exam-
ples). This totality, although stemming from the
human mind, appears to us to be a natural science in
the normal sense, such as physics or biology, and is
for us just as concrete. I would actually maintain that
mathematics not only has a theoretical side, but also
an experimental one. The former is clear: We strive for
general theorems, principles, proofs and methods.
That is the theory. But in the beginning one often has
no idea of what to expect, and how to continue, and
one gains understanding and intuition through exper-
imentation, that is, through the study of special cases.
First, one hopes to be led in this way to a sensible
conjecture, and second, perhaps to stumble upon an
idea that will lead to a general proof. It can also
happen, of course, that certain special cases are of
great interest in themselves. That is the experimental
side. The fact that we operate with intellectual objects
more than with real objects and laboratory equipment
is actually not important. The feeling that mathematics
is in this sense an experimental science is also not new.
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Hermite, for example, wrote to L. Konigsberger
around 1880:

The feeling expressed at that point in your letter where you say to
me: “The more I think about all these things, the more I come to
realize that mathematics is an experimental science like all other
sciences,”” this feeling, I say, is also my feeling [22].

Traditionally, these experiments are carried out in
one’s head (or with pen and paper), and for this reason
I have spoken of mental tools. I should add, however,
that for about 20 years real apparatuses, namely, elec-
tronic computers, have been playing an increasing
role. They have actually given this experimental side
of mathematics a new dimension. This has advanced
to the extent that one may already see important, re-
ciprocal, and fascinating interactions between com-
puter science and pure mathematics. )

The word “science”” in my title now takes a broader
meaning: It refers not only to the natural sciences, as
it did earlier, but also—and this to a much greater
extent—to the conception of mathematics itself as an
experimental and theoretical science, I would venture
to say, as a mental natural science, as a natural science
of the intellect, whose objects and modes of investi-
gations are all creations of the mind.

This makes it somewhat easier for me to speak of
motivation and aesthetics. If one does not want to take
applications in the natural sciences as a yardstick, one
is still not thrown back upon mere intellectual ele-
gance. There still remain almost practical criteria;
namely, applicability in mathematics itself. The con-
sideration of this mathematical reality, the open prob-
lems, the structure, needs and connections among var-
ious areas, already indicates possibly fruitful, valuable
directions and allows the mathematician to orient him-
self and attach relative values to problems as well as
to theories. Often a test for the value of a new theory
is whether it can solve old problems. De facto, this
limits the freedom of a mathematician, in a way which
is comparable to the constraints imposed on a physi-
cist, who after all doesn’t choose at random the phe-
nomena for which he wants to construct a theory or
to devise experiments. Many examples show that
mathematicians have often been able to foresee how
certain areas of mathematics will develop, which prob-
lems should be taken up and probably would be
quickly solved. Rather often statements about the fu-
ture of mathematics have proved true. Such predic-
tions are not perfect, but they are successful enough
to indicate a difference from art. Analogous relatively
successful forecasts about the future of painting, for
example, hardly exist at all.

I don’t want to go too far in this, however, I sug-
gested the concept of mathematics as a mental natural
science as one of three elements, not as the whole. On
the one hand, I don’t want to overlook the importance
of the interactions between mathematics and the nat-



ural sciences. First, it is a common saying that all dis-
ciplines in the natural sciences must strive for a math-
ematical formulation and treatment, indeed, that a dis-
cipline achieves the status of a science only when this
has been carried out. Thus it is surely important that
mathematicians try to help in this way. Second, it is
doubtless a great achievement to formulate and treat
complicated phenomena mathematically, and the new
problems which are thereby introduced represent an
enrichment for mathematics. One need only think of
probability. I only mean that it is simply not necessary
to put the idea of applicability in the foreground in
order to do valuable mathematics. The history of math-
ematics shows that many outstanding achievements
came from mathematicians who weren’t thinking at all
about external applications and who were led by
purely mathematical considerations. And as was al-
ready mentioned and illustrated, these contributions
often found important applications in the natural sci-
ences or in engineering, often in completely unfore-
seen ways.

On the other hand, I don’t want to say that one can
foresee everything completely rationally. Actually, this
isn’t the case even in the natural sciences, especially
since one often does not know in advance which ex-
periments will prove interesting. Outstanding mathe-
maticians have also been wrong and have sometimes,
precisely in the name of applicability within mathe-
matics, termed fruitless, idle, even dangerous, new
ideas which later proved fundamental. The freedom
not to consider practical applications, which von Neu-
mann demanded for science as a whole, must also be
demanded within mathematics.

One could object that this analogy between mathe-
matics and natural sciences overlooks one essential dif-
ference: In the natural sciences or in technology one
often encounters problems that one has to solve in
order to advance at all. In the world of mathematical
thought, one has still de jure the freedom to put aside
apparently unsolvable, overly difficult problems and
turn to other, more manageable ones; and maybe, in
fact, follow the path of least resistance just as von Neu-
mann had feared. Wouldn't that be a temptation for a
mathematician who defines mathematics as “the art of
finding problems that one can solve”? Interestingly
enough, I heard this definition from a mathematician
whose works are especially remarkable because they
treated so many problems which seemed quite special
at the time but which later proved fundamental and
whose solutions opened up néw paths, namely, Heinz
Hopf.

It cannot be denied, however, that sometimes paths
of least resistance are indeed followed, leading to
trivial or meaningless work. It can also happen that a
successful school later falls into a sterile period and
then even, at worst, exerts a harmful influence. Re-
markably enough, however, an antidote always comes

along, a reaction which eliminates these mistaken
paths and fruitless directions. Up until now mathe-
matics has always been able to overcome such growth
diseases, and I am convinced that it will always do so
as long as there are so many talented mathematicians.
It is very odd, however: Many of us have this feeling
of a unity in mathematics, but it is dangerous to pre-
scribe overly precise guidelines in the name of our con-
ception of it. It is more important that freedom reign
despite occasional misuse. Why this is so successful
cannot be fully explained. If one thinks of Hopf, for
example, one can, to a certain extent, see rational cri-
teria in his choice of problems: They were for instance
often the first special cases of a general problem for
which known methods of proof were not applicable.
He was of course aware of this. But that doesn’t ex-
plain everything. He probably didn’t always foresee
how influential his work would become; and most
likely did not worry about it. It is simply a part of the
talent of a mathematician to be drawn to ““good” prob-
lems, i.e., to problems which turn out to be significant
later, even if it is not obvious at the time he takes them
up. The mathematician is led to this partly by rational,
scientific observations, partly by sheer curiosity, in-
stinct, intuition, purely aesthetic considerations.
Which brings me to my final subject, the aesthetic
feeling in mathematics.

[ already mentioned the idea of mathematics as an
art, a poetry of ideas. With that as a starting point,
one would conclude that, in order for one to appreciate
mathematics, to enjoy it, one needs a unique feeling
for intellectual elegance and beauty of ideas in a very
special world of thought. It is not surprising that this
can hardly be shared with nonmathematicians: Our
poems are written in a highly specialized language,
the mathematical language; although it is expressed in
many of the more familiar languages, it is nevertheless
unique and translatable into no other language; un-
fortunately, these poems can only be understood in
the original. The resemblance to an art is clear. One
must also have a certain education for the appreciation
of music or painting, which is to say one must learn a
certain language.

I have long agreed with such opinions and analo-
gies. Without changing my fundamental position with
regard to mathematics, I would nonetheless like to re-
formulate them somewhat in the direction of my pre-
vious statements. I believe that our aesthetics are not
always so pure and esoteric but also include a few
more earthly yardsticks such as meaning, conse-
quences, applicability, usefulness—but within the
mathematical science. Our judgment of a theorem, a
theory, a proof is also influenced by this, but it is often
simply equated to the aesthetic. I would like to try to
explain this using Galois’ theory, mentioned earlier.
This theory is generally treasured as one of the most
beautiful chapters in mathematics. Why? First, it
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solved a very old and, at that time, the most important
question about equations. Second, it is an extremely
comprehensive theory that goes far beyond the orig-
inal question of solvability by radicals. Third, it is
based on only a few principles of great elegance and
simplicity which are formulated within a new frame-
work with new concepts which demonstrate the
greatest originality. Fourth, these new viewpoints and
concepts, especially the concept of group, opened new
paths and had a lasting influence on the whole of
mathematics.

You will notice that of these four points only the
third is a truly aesthetic judgment, and one about
which one can have one’s own opinion only when one
understands the technical details of the theory. The
others have a different character. One could make sim-
ilar statements about theories in any natural science.
They have a greater objective content, and a mathe-
matician can have his own opinion about them even
if he doesn’t fully grasp the technical details of the
theory. For the purpose of this discussion I have sep-
arated these four elements, but normally I would not
always do so explicitly, and all four contribute to the
impression of beauty. I do think that in this respect
this example is fairly typical: What we describe as
aesthetic is actually often a fusion of different views.
For example, I would naturally find a method of proof
more beautiful if it found new and unexpected appli-
cations, although the method itself hadn’t changed. It
may have become more important, but in and of itself
not more beautiful. Since all this takes place within
mathematics itself, it will hardly help the nonmathe-
matician penetrate our aesthetic world. I hope, how-
ever, that it will help him find more plausible the fact
that our so-called aesthetic judgments display a greater
consensus than in art, a consensus that goes far be-
yond geographical and chronological limitations. In
any case, I regard this as being a major factor. But once
again, I must avoid taking this too far. It is a question
of degree, not an absolute difference. An aesthetic
judgment on the work of a composer or a painter also
draws on external factors such as influence, predeces-
sors, the position of the work with relation to other
works, even if it is to a lesser extent. On the other
hand, there are differences of opinion and fluctuations
in time in the evaluation of mathematical works,
though not to such a strong degree, I would add. All
these nuances need a good deal of explanation which
I cannot go into here for lack of time.

In the limited amount of time at my disposal, it
would of course be easier to make only sweeping short
statements about mathematics. But unfortunately, or
fortunately, just as in other human undertakings to
which many people contributed over many centuries,
mathematics refuses to let itself be described by just a
tew simple formulas. Almost every general statement
about mathematics has to be qualified somehow. One
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exception, perhaps the only one, might be this state-
ment itself. | hope I have at least given the impression
that mathematics is an extremely complex creation
which displays so many essential traits in common
with art and experimental and theoretical sciences that
it has to be regarded as all three at the same time, and
thus must be differentiated from all three as well.

I am aware that I have raised more questions than I
have answered, treated too briefly those I have dis-
cussed and not even touched upon some important
ones, such as the value of this creation. One can of
course point to innumerable applications in the natural
sciences and in engineering, many of which have a
great influence on our daily life, thereby establishing
a social right to existence for mathematics. But I must
confess that, as a pure mathematician, I am more in-
terested in an assessment of mathematics in itself. The
contributions of the various mathematicians meld into
an enormous intellectual construct which, in my
opinion, represents an impressive testimony to the
power of human thinking. The mathematician Jacobi
once wrote that “the only purpose of science is to
honor the human mind”” [23]. I believe that this cre-
ation does indeed do the human mind great honor.
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