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Ladies and Gentlemen, 

It is a great honor to be invited to address you here, 
but one which is fraught with difficulties. First, there 
is a rather natural reluctance for a practicing mathe- 
matician to philosophize about mathematics instead of 
just giving a mathematical talk. As an illustration, the 
English mathematician G. Hardy called it a "melan- 
choly experience" to write about mathematics rather 
than just prove theorems! However, had I not sur- 
mounted that feeling, I wouldn' t  be here, so I need 
not dwell on it any more. More serious difficulties arise 
from the fact that there are mathematicians and non- 
mathematicians in the audience. Whether one should 
conclude from this that my talk is best suited for an 
empty audience is a question which every one of you 
will have answered within the next hour and therefore 
needs no further elaboration. The difficulty brought 
about by the presence of mathematicians here is that 
it makes me aware, almost painfully aware, that in fact 
everything about my topic has already been said, all 
arguments have already been presented and argued 
pro and con: Mathematics is only an art, or only a 
science, the queen of sciences, merely a servant of sci- 

* Translated by Kevin M. Lenzen 

ence, or even art and science combined. The very sub- 
ject of my address, in Latin Mathesis et Ars et Scientia 
Dicenda appeared as the third topic in the defense of a 
dissertation in the year 1845. The opponent claimed it 
was only art, but not science [1]. It has occasionally 
been maintained that mathematics is rather trivial, al- 
most tautological, and as such certainly unworthy of 
being regarded either as art or as science [2]. Most 
arguments can be supported by many references to 
outstanding mathematicians. It is even possible some- 
times, by selective citation, to attribute widely dif- 
ferent opinions to one and the same mathematician. 
So I would like to emphasize at the outset that the 
professional mathematicians assembled here are un- 
likely to hear anything new. 

If I turn to the nonmathematicians, however, I en- 
counter a much bigger, almost opposite problem: My 
task is to say something about the essence, the nature 
of mathematics. In so doing, however, I cannot as- 
sume that  the object of my s ta tements  is common 
knowledge. Of course, I can presuppose a certain fa- 
miliarity with Greek mathematics,  Euclidean geom- 
etry, for example, perhaps the theory of conic sections, 
or even the rudiments of algebra or analytical geom- 
etry. But they have little to do with the object of 
present-day mathematical research: Starting from this 
more or less familiar ground,  mathematicians have 
gone on to develop ever more abstract theories, which 
have less and less to do with everyday experience, 
even when they later find important applications in 
the natural sciences. The transition from one level of 
abstraction to the next was often very difficult even for 
the best mathematicians and represented at the time 
an extremely bold step. I couldn't possibly give a sat- 
isfactory survey of this accumulation of abstractions 
upon abstractions and of their applications in just a 
few minutes.  Still I would feel quite uncomfortable 
simply to philosophize about mathematics without  
saying anything specific on its contents. I would also 
like to have a small supply of examples at hand to 
be able to illustrate general statements about math- 
ematics or the position of mathematics with respect to 
art and natural sciences. I shall therefore attempt to 
describe, or at least to give an idea of, some such steps. 
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In doing so I will not be able to define precisely all my 
terms and I don' t  expect full understanding by all. But 
that is not essential. What I want to communicate is 
really just a feeling for the nature of these transitions, 
perhaps even for their boldness and significance in the 
history of thought. And I promise not to spend any 
more than 20 minutes doing so. 

A mathematician often aims for general solutions. 
He enjoys solving many special problems with a few 
general formulae.  One can call this economy of 
thought or laziness. An age-old example is the solution 
to a second-degree equation, say 

x2 + 2bx + c =  0 

Here b and c are given real numbers. We are looking 
for a real number x that will satisfy this equation. For 
centuries it has been known that x can be expressed 
in terms of b and c by the formula 

x =  - b + -  V ' - ~ - c  

If b 2 > c, we can take the square root and get two 
solutions. If b 2 = c, then x = - b is said to be a double 
solution. If b 2 < c, however, then we cannot take the 
square root and maintain, at least at the beginning 
secondary school level, that there is no solution. 

In the sixteenth century similar formulas were de- 
vised for third- and even fourth-degree equations, 
such as the equation 

x 3 + a x  + b = O  

I won't  write the formula out. It contains square roots 
and cube roots, so-called radicals. But an extremely 
interesting phenomenon was discovered that came to 
be called the casus irreducibilis. If this equation has 
three distinct real solutions and we apply the formula, 
which allows one in principle to compute them, then 
we meet  square roots of negative numbers;  at the 
outset these are meaningless. If we ignore the fact that 
they don't  exist, however, and are not afraid to com- 
pute with them, then they cancel out and we get the 
solutions, provided we carefully follow certain formal 
rules. In short, starting from the given real numbers 
a,b, we arrive at the sought for ones by using "nonreal 
numbers". The square roots of negative numbers were 
called "imaginary numbers" to distinguish them from 
the real numbers ,  and controversies raged as to 
whether it was actually legitimate to use such nonreal 
numbers; Descartes, for example, did not want to have 
anything to do with them. Only around the year 1800 
was a satisfactory solution--satisfactory for some at 
least-- to this problem found. The real numbers are 
imbedded in a bigger system consisting of the points 
of the plane, i.e., pairs of real numbers ,  between 
which one defines certain operations which have the 
same formal properties as the four basic operations in 
arithmetic. The real numbers are identified with the 
points on the horizontal axis, and the square roots of 

negative numbers with those on the vertical axis. One 
then began to speak of complex (or imaginary) num- 
bers. Formally we can use these mathematical objects 
almost as easily as the real numbers and can obtain 
solutions which are sometimes real, sometimes com- 
plex. For the second-degree equation mentioned ear- 
lier we can now say that there are two complex solu- 
tions if b 2 < c. 

To a certain extent this is, of course, merely a con- 
vention, but it wasn't  easy to grant to these complex 
numbers the same right to existence as to real numbers 
and not to regard them as a mere tool for arriving at 
real numbers. There was no strict definition of real 
numbers back then, but the close connection between 
mathematics and measurement or practical computa- 
tion gave real numbers a certain reality in spite of the 
difficulties with irrational and negative numbers. It 
wasn ' t  the same with complex numbers,  however. 
That was a step in an entirely new direction, bringing 
a purely intellectual creation to the fore. As mathe- 
maticians became used to this new step, they began 
to realize that many operations performed with func- 
tions such as polynomials, trigonometric functions, 
etc., still made sense when complex values were ac- 
cepted as arguments and as values. This marked the 
beginning of complex analysis or function theory. As 
early as 1811, the mathematician Gauss pointed out 
the necessity of devising such a theory for its own 
sake: 

The point here is not practical utility, rather for me analysis is an 
independent science which would lose an extraordinary amount of 
beauty and roundness by discriminating against those fictitious 
quantities [3]. 

Apparently even he did not foresee the practical rele- 
vance complex analysis was later to achieve, as in the 
theory of electricity or in aerodynamics, for example. 

But that is not the end of it. Allow me, if you will, 
to mention two further steps toward greater abstrac- 
tion. Let us return to our second-degree equation. One 
can now say that  it has, in general, two solutions 
which may be complex numbers. Similarly, an equa- 
tion of the n-th degree has n solutions if one accepts 
complex numbers.  From the Sixteenth Century on, 
people wondered whether there also was a general 
formula which would express the solutions of an equa- 
tion of degree at least five from the coefficients by 
means of radicals. It was finally proved to be impos- 
sible. One proof (chronologically the third) was given 
by the French mathemat ic ian  E. Galois within the 
framework of a more general theory which was not 
understood at the time and subsequently forgotten. 
Some 15 years later his work was rediscovered and 
understood only with great difficulty by a very few, 
so new was his viewpoint. Given an equation, Galois 
considered a certain set of permutations of the roots 
and showed that certain properties of this set of per- 
mutations are decisive. That was the beginning of an 

10 THE MATHEMATICAL INTELLIGENCER VOL. 5, NO. 4, 1983 



independent study of such sets of permutations which 
later came to be known as Galois groups. He showed 
that an equation is solvable by means of radicals only 
when the groups involved belong to a certain class; 
namely, the solvable groups, as they came to be called. 
The theorem mentioned earlier, regarding equations 
of degree at least five, is then a consequence of the 
fact that the group associated to a general equation of 
the n-th degree is solvable only when n = 1, 2, 3, 4 [4]. 
The important properties of such groups, for instance 
to be solvable, are actually independent of the nature 
of the objects to be permuted, and this led to the idea 
of an "abstract group" and to theorems of great sig- 
nificance, applicable in many areas of mathematics. 
But for many years this appeared to be nothing more 
than pure and very abstract mathematics. As a math- 
ematician and a physicist were discussing the curric- 
ulum for physics at Princeton University around the 
year 1910, the physicist said they could no doubt leave 
out group theory, for it would never be applicable to 
physics [5]. Not 20 years later, three books on group 
theory and quantum mechanics appeared, and since 
then groups have been fundamental in physics as well. 

The following will serve as a final example. I said 
earlier that we can consider complex numbers to be 
points in the plane. An Irish mathematician, N. R. 
Hamilton, wondered whether one could define an an- 
alogue of the four basic operations among the points 
of three-dimensional  space, thus forming an even 
more comprehensive  number  system. It took him 
about 10 years to find the answer: It is not possible in 
three-dimensional space, but it is in four-dimensional 
space. We do not need to try to imagine just what four- 
dimensional  space is here. It is simply a figure of 
speech for quadruples of real numbers instead of tri- 
ples or pairs of real numbers. He called these new 
numbers quaternions. He did, however, have to do 
wi thout  one proper ty  of real or complex numbers  
which up until then had been taken for granted: com- 
mutativity in multiplication, i.e., a x b = b x a. He 
also showed that the calculus with quaternions had 
applications in the mathematical t reatment of ques- 
tions in physics and mechanics. Later, many other al- 
gebraic systems with a noncommutative product were 
defined, notably matrix algebras. This also appeared 
to be an entirely abstract form of mathematics, without 
connections to the outside world. In 1925, however, 
as Max Born was thinking about some new ideas of 
W. Heisenberg's, he discovered that the most appro- 
priate formalism for expressing them was none other 
than matrix algebra, and this suggested that physical 
quantities be represented by means of algebraic objects 
which do not necessarily commute. This led to the 
uncertainty principle and was the beginning of matrix 
quantum mechanics, of the assignment of operators to 
physical quantities, which is at the basis of quantum 
mechanics [6]. 

With this last example I shall end my attempts to 
describe some mathematical topics. The examples are, 
of course, extremely incomplete and not at all repre- 
sentative of all areas of mathematics. They do have 
two properties in common, however, which I would 
like to emphasize since they are valid in a great many 
cases. First of all, these developments lead in the di- 
rection of ever greater abstraction, further and further 
away from nature. Second, abstract theories actually 
developed for their own sake have found important 
applications in the natural sciences. The suitability of 
mathematics to the needs of the natural sciences is in 
fact astonishingly great (one physicist spoke once of 
the "unreasonable effectiveness of mathematics" [7]) 
and is worthy of a far more detailed discussion than I 
can afford to enter into here. 

The transition to ever greater abstraction is not to be 
taken for granted, as you may have gathered from 
Gauss' quotation. Mathematics was originally devel- 
oped for practical purposes such as bookkeeping, mea- 
surements, and mechanics; even the great discoveries 
of the Seventeenth Century, such as infinitesimal and 
integral calculus, were at first primarily tools for 
solving problems in mechanics,  as t ronomy,  and 
physics. The mathematician Euler, who was active in 
all areas of mathematics  and its appl icat ions-- in-  
cluding sh ipbu i ld ing- -a l so  wrote papers on pure 
number theory and more than once felt the need to 
explain that it was as justified and important as more 
practically oriented work [8]. Mathematics was from 
the very beginning, of course, a kind of idealization, 
but for a long time was not as far removed from reality 
or, more precisely, from our perception of reality, as 
in the examples mentioned earlier. As mathematicians 
went further in this direction, they became increas- 
ingly aware that a mathematical concept has a right to 
existence as soon as it has been defined in a logically 
consistent manner, without necessarily having a con- 
nection with the physical world; and that they had the 
right to study it even when there seemed to be no 
practical applications at hand. In short, this led more 
and more to "Pure Mathematics" or "Mathematics for 
Its Own Sake". 

But if one leaves out the controlling function of prac- 
tical applicability, the question immediately arises as 
to how one can make value judgments. Surely not all 
concepts and theorems are equal; as in G. Orwell's 
Animal Farm, some must be more so than others. Are 
there then internal criteria which can lead to a more 
or less objective hierarchy? You will notice that the 
same basic quest ion can be asked about painting,  
music, or art in general: It thus becomes a question of 
aesthetics. Indeed, a usual answer is that mathematics 
is to a great extent an art, an art whose development 
has been derived from, guided by, and judged ac- 
cording to aesthetic criteria. For the lay person it is 
often surprising to learn that one can speak of aesthetic 
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criteria in so grim a discipline as mathematics. But this 
feeling is very s t rong for the mathematic ian,  even 
though it is difficult to explain: What are the rules of 
this aesthetic? Wherein lies the beauty of a theorem, 
of a theory? Of course there is no one answer that will 
satisfy all mathematicians, but there is a surprising de- 
gree of agreement, to a far greater extent, I think, than 
exists in music or painting. 

Without wishing to maintain that I can explain this 
fully, I would like to attempt to say a bit more about 
it later. At the moment  I shall content myself with the 
assertion that the analogy with art is one with which 
many mathemat ic ians  agree. For example, G. H. 
Hardy was of the opinion that, if mathematics has any 
right to exist at all, then it is only as art [9]. Our activity 
has much in common with that of an artist: A painter 
combines colors and forms, a musician tones, a poet 
words, and we combine ideas of a certain sort. The 
painter E. Degas wrote sonnets from time to time. 
Once, in a conversation with the poet S. Mallarm6, he 
complained that  he found writ ing difficult even 
though he had many ideas, indeed an overabundance 
of ideas. Mallarm4 answered that poems were made 
of words, not ideas [10]. We, on the other hand, work 
primarily with ideas. 

This feeling of art becomes even stronger when one 
thinks of how a researcher works and progresses: One 
should not imagine that the mathematician operates 
entirely logically and systematically. He often gropes 
about in the dark, not knowing whether he should 
attempt to prove or disprove a certain proposition, and 
essential ideas often occur to him quite unexpectedly, 
without his even being able to see a clear and logical 
path leading to them from earlier considerations. Just 
as with composers and artists one should speak of in- 
spiration [11]. 

Other mathematicians, however, are opposed to this 
view and maintain that an involvement with mathe- 
matics without being guided by the needs of the nat- 
ural sciences is dangerous and almost certainly leads 
to theories which may be quite subtle and which may 
provide the mind with a peculiar pleasure, but which 
represent a kind of intellectual mirror that is com- 
pletely worthless from the standpoint  of science or 
knowledge. For example, the mathematician J. von 
Neumann wrote in 1947: 

As a mathematical discipline travels far from its empirical sources, 
or still more, if it is second and third generation only indirectly 
inspired by ideas coming from "reality", it is beset with very grave 
dangers. It becomes more and more purely aestheticizing, more and 
more purely l'art pour l ' a r t . . ,  there is a great danger that the 
subject will develop along the line of least resistance.. ,  will sep- 
arate into a multitude of insignificant branches . . . .  

In any event . . . the only remedy seems to me to be the reju- 
venating return to the source: the reinjection of more or less directly 
empirical ideas [12]. 

Still others have taken a more intermediate stance: 

They fully recognize the importance of the aesthetic 
side of mathematics but feel that it is dangerous to 
push mathematics for its own sake too far. PoincarG 
for example, had written earlier: 

In addition to this it provides its disciples with pleasures similar to 
painting and music. They admire the delicate harmony of the num- 
bers and the forms; they marvel when a new discovery opens up to 
them an unexpected vista; and does the joy that they feel not have 
an aesthetic character even if the senses are not involved at a l l ? . . .  

For this reason I do not hesitate to say that mathematics deserves 
to be cultivated for its own sake, and I mean the theories which 
cannot be applied to physics just as much as the others [131. 

But a few pages further on he returns to this compar- 
ison and adds: 

If I may be allowed to continue my comparison with the fine arts, 
then the pure mathematician who would forget the existence of the 
outside world could be likened to the painter who knew how to 
combine colors and forms harmoniously, but who lacked models. 
His creative power would soon be exhausted [141. 

This denial of the possibility of abstract painting 
strikes me as especially noteworthy since we are in 
Munich, where, not much later, an artist would con- 
cern himself quite deeply with this question, namely, 
Wassily Kandinsky. It was sometime in the first de- 
cade of this century that he suddenly felt, after looking 
at one of his own canvases, that the subject can be 
detrimental to the painting in that it may be an obstacle 
to direct access to forms and colors; that is, to the ac- 
tual artistic qualities of the work itself. But, as he wrote 
later [15], "a frightening gap" (eine erschreckende Tiefe) 
and a mass of questions confronted him, the most im- 
por tant  of which was, " W h a t  should replace the 
missing subject?" Kandinsky was fully aware of the 
danger of ornamentation, of a purely decorative art, 
and wanted to avoid it at all costs. Contrary to Poin- 
car6, however ,  he did not  conclude that  paint ing 
without a real subject had to be fruitless. In fact, he 
even developed a theory of the "inner necessity" and 
"intellectual content" of a painting. Since about 1910, 
as you know, he and other painters in increasing num- 
bers have dedicated themselves to so-called abstract or 
pure painting which has little or nothing to do with 
nature. 

If one does not want to admit an analogous possi- 
bility for mathematics, however, then one will be led 
to a conception of mathematics which I would like to 
summarize as follows: On the one hand, it is a science 
because its main goal is to serve the natural sciences 
and technology. This goal is actually at the origin of 
mathematics and is constantly a wellspring of prob- 
lems. On the other hand it is an art because it is pri- 
marily a creation of the mind and progress is achieved 
by intellectual means, many of which issue from the 
depths of the human mind, and for which aesthetic 
criteria are the final arbiters. But this intellectual 
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freedom to move in a world of pure thought must be 
governed to some extent by possible applications in 
the natural sciences. 

However,  this view is really too narrow, in partic- 
ular the final clause is too limiting, and many mathe- 
maticia.ns have insisted on complete freedom of ac- 
tivity. First of all, as was already pointed out, many 
areas of mathematics which have proved important for 
applications would not have been developed at all if 
one had insisted on applicability from the beginning. 
In spite of the above quotation, von Neumann himself 
pointed this out in a later lecture: 

But still a large part of mathematics which became useful developed 
with absolutely no desire to be useful, and in a situation where 
nobody could possibly know in what area it would become useful: 
and there were no general indications that it even would be so . . . .  
This is true of all science. Successes were largely due to forgetting 
completely about what one ultimately wanted, or whether one 
wanted anything ultimately; in refusing to investigate things which 
profit, and in relying solely on guidance by criteria of intellectual 
elegance . . . .  

And I think it extremely instructive to watch the role of science 
in everyday life, and to note how in this area the principle of laissez 
faire has led to strange and wonderful results [16]. 

Second, and for me more important, there are areas 
of pure mathematics which have found little or no ap- 
plication outside mathematics, but which one cannot 
help viewing as great achievements. I am thinking, for 
example, of the theory of algebraic numbers, class field 
theory, automorphic functions, transfinite numbers ,  
etc. 

Let us return to the comparison with painting once 
again and take as "subject" the problems which are 
drawn from the physical world. Then we see that we 
have painting drawn from nature as well as pure or 
abstract painting. 

This comparison is, however,  not yet entirely satis- 
factory, for such a description of mathematics would 
not encompass all its essential aspects, in particular its 
coherence and unity. Indeed, mathematics displays a 
coherence which I feel is much greater than in art. As 
a testimony to this, note that the same theorem is often 
proved independent ly  by mathematicians living in 
wide ly  separa ted  locations, or that a considerable 
number of papers have two, sometimes more, authors. 
It can also happen that parts of mathematics which 
were developed completely independently of one an- 
other suddenly  demonstra te  deep-lying connections 
under the impact of new insights. Mathematics is, to 
a great extent, a collective undertaking. Simplifications 
and unifications maintain the balance with unending 
development and expansion; they display again and 
again a remarkable unity even though mathematics is 
far too large to be mastered by a single individual. 

I think it would be difficult to account fully for this 
by appealing solely to the criteria mentioned earlier-- 
namely, subjective ones like intellectual elegance and 

beauty, and consideration of the needs of natural sci- 
ences and technology. One is then led to ask whether 
there are criteria or guidelines other than those. In my 
opinion this is the case, and I would now like to com- 
plete the earlier description of mathematics by looking 
at it from a third standpoint and adding another es- 
sential element to it. In preparation for this I would 
like to digress, or at least apparently digress, and take 
up the question, Does mathematics have an existence 
of its own? Do we create mathematics or do we grad- 
ually discover theories which exist somewhere inde- 
pendently of us? If this is so, where is this mathemat- 
ical reality located? 

It is, of course, not absolutely clear that such a ques- 
tion is really meaningful. But this feeling--that  math- 
ematics somehow,  somewhere ,  preexis ts - - i s  wide- 
spread. It was expressed quite sharply, for example, 
by G. H. Hardy: 

I believe that mathematical reality lies outside us, that our function 
is to discover or observe it, and that the theorems which we prove, 
and which we describe grandiloquently as our "creations", are 
simply our notes of our observations. This view has been held, in 
one form or another by many philosophers of high reputation, from 
Plato onwards . . . .  [17]. 

If one is a believer, then one will see this preexistent 
mathematical reality in God. This was actually the be- 
lief of Hermite, who once said: 

There exists, if I am not mistaken, an entire world which is the 
totality of mathematical truths, to which we have access only with 
our mind, just as a world of physical reality exists, the one like the 
other independent of ourselves, both of divine creation [18]. 

It wasn' t  too long ago that a colleague explained in 
an introductory lecture that the following question had 
occupied him for years: Why has God created the ex- 
ceptional series? 

But a reference to divine origin would hardly satisfy 
the nonbeliever.  Many do, however ,  have a vague 
feeling that  mathemat ics  exists somewhere ,  even 
though, when they think about it, they cannot escape 
the conclusion that mathemat ics  is exclusively a 
human creation. 

Such questions can be asked of many other concepts 
such as state, moral values, religion, etc., and would 
probably be worthy of consideration all by themselves. 
But for want  of time and competence, I shall have to 
content myself with a short and possibly oversimpli- 
fied answer to this apparent dilemma by agreeing with 
the thesis that we tend to posit existence on all those 
things which belong to a civilization or culture in that 
we share them with other people and can exchange 
thoughts  about  them. Something becomes objective 
(as opposed to "subjective") as soon as we are con- 
vinced that it exists in the minds of others in the same 
form as it does in ours, and that we can think about it 
and discuss it together [19]. Because the language of 
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mathematics is so precise, it is ideally suited to de- 
fining concepts for which such a consensus exists. In 
my opinion, that  is sufficient to provide us with a 
feeling of an objective existence, of a reality of mathe- 
matics similar to that mentioned by Hardy and Her- 
mite above, regardless of whether it has another or- 
igin, as Hardy and Hermite maintain. One could spec- 
ulate forever on this last point, of course, but that is 
actually irrelevant to the continuation of this discus- 
sion. 

Before I elaborate on this, I would like to note that 
similar thoughts  about our conception of physical 
reality have been expressed. For example, Poincar6 
wrote: 

Our guarantee of the objectivity of the world in which we live is 
the fact that we share this world with other sentient beings . . . .  

That is therefore the first requirement of objectivity: That which 
is objective must be common to more than one spirit and as a result 
be transmittable from one to the o t h e r . . .  [201. 

and Einstein: 

By the aid of speech different individuals can, to a certain extent, 
compare their experiences. In this way it is shown that certain sense 
perceptions of different individuals correspond to each other, while 
for other sense perceptions no such correspondence can be estab- 
lished. We are accustomed to regard as real those sense perceptions 
which are common to different individuals, and which therefore are, 
in a measure, impersonal [211. 

Now back to mathematics. Mathematicians share an 
intellectual reality, a gigantic number of mathematical 
ideas, objects whose properties are partly known and 
partly unknown, theories, theorems, solved and un- 
solved problems, which they study with mental tools�9 
These problems and ideas are partially suggested by 
the physical world; primarily, however,  they arise 
from purely mathemat ical  considerat ions (such as 
groups or quaternions to go back to my earlier exam- 
ples). This totality, a l though s temming from the 
human mind, appears to us to be a natural science in 
the normal sense, such as physics or biology, and is 
for us just as concrete. I would actually maintain that 
mathematics not only has a theoretical side, but also 
an experimental one. The former is clear: We strive for 
general theorems, principles, proofs and methods�9 
That is the theory. But in the beginning one often has 
no idea of what to expect, and how to continue, and 
one gains understanding and intuition through exper- 
imentation, that is, through the study of special cases. 
First, one hopes to be led in this way to a sensible 
conjecture, and second, perhaps to stumble upon an 
idea that  will lead to a general proof. It can also 
happen,  of course, that certain special cases are of 
great interest in themselves. That is the experimental 
side. The fact that we operate with intellectual objects 
more than with real objects and laboratory equipment 
is actually not important�9 The feeling that mathematics 
is in this sense an experimental science is also not new. 

Hermite ,  for example, wrote to L. K6nigsberger 
around 1880: 

The feeling expressed at that point in your letter where you say to 
me: "The more I think about all these things, the more I come to 
realize that mathematics is an experimental science like all other 
sciences," this feeling, I say, is also my feeling [221. 

Traditionally, these experiments are carried out in 
one's head (or with pen and paper), and for this reason 
I have spoken of mental tools�9 I should add, however, 
that for about 20 years real apparatuses, namely, elec- 
tronic computers,  have been playing an increasing 
role. They have actually given this experimental side 
of mathematics a new dimension. This has advanced 
to the extent that one may already see important, re- 
ciprocal, and fascinating interactions between com- 
puter science and pure mathematics. 

The word "science" in my title now takes a broader 
meaning: It refers not only to the natural sciences, as 
it did earlier, but a l so- -and  this to a much greater 
extent - - to  the conception of mathematics itself as an 
experimental and theoretical science, I would venture 
to say, as a mental natural science, as a natural science 
of the intellect, whose objects and modes of investi- 
gations are all creations of the mind. 

This makes it somewhat easier for me to speak of 
motivation and aesthetics. If one does not want to take 
applications in the natural sciences as a yardstick, one 
is still not  thrown back upon  mere intellectual ele- 
gance�9 There still remain almost practical criteria; 
namely, applicability in mathematics itself�9 The con- 
sideration of this mathematical reality, the open prob- 
lems, the structure, needs and connections among var- 
ious areas, already indicates possibly fruitful, valuable 
directions and allows the mathematician to orient him- 
self and attach relative values to problems as well as 
to theories�9 Often a test for the value of a new theory 
is whether  it can solve old problems�9 De facto, this 
limits the freedom of a mathematician, in a way which 
is comparable to the constraints imposed on a physi- 
cist, who after all doesn't  choose at random the phe- 
nomena for which he wants to construct a theory or 
to devise experiments.  Many  examples show that  
mathematicians have often been able to foresee how 
certain areas of mathematics will develop, which prob- 
lems should be taken up and probably would  be 
quickly solved�9 Rather often statements about the fu- 
ture of mathematics have proved true. Such predic- 
tions are not perfect, but they are successful enough 
to indicate a difference from art. Analogous relatively 
successful forecasts about the future of painting, for 
example, hardly exist at all. 

I don' t  want to go too far in this, however, I sug- 
gested the concept of mathematics as a mental natural 
science as one of three elements, not as the whole. On 
the one hand, I don't  want to overlook the importance 
of the interactions between mathematics and the nat- 
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ural sciences. First, it is a common saying that all dis- 
ciplines in the natural sciences must strive for a math- 
ematical formulation and treatment, indeed, that a dis- 
cipline achieves the status of a science only when this 
has been carried out. Thus it is surely important that 
mathematicians try to help in this way. Second, it is 
doubtless a great achievement to formulate and treat 
complicated phenomena mathematically, and the new 
problems which are thereby introduced represent an 
enrichment for mathematics. One need only think of 
probability. I only mean that it is simply not necessary 
to put the idea of applicability in the foreground in 
order to do valuable mathematics. The history of math- 
ematics shows that many outstanding achievements 
came from mathematicians who weren't  thinking at all 
about  external applicat ions and who  were  led by 
purely mathematical considerations. And as was al- 
ready mentioned and illustrated, these contributions 
often found important applications in the natural sci- 
ences or in engineering, often in completely unfore- 
seen ways. 

On the other hand, I don't  want to say that one can 
foresee everything completely rationally. Actually, this 
isn't the case even in the natural sciences, especially 
since one often does not know in advance which ex- 
periments will prove interesting. Outstanding mathe- 
maticians have also been wrong and have sometimes, 
precisely in the name of applicability within mathe- 
matics, termed fruitless, idle, even dangerous, new 
ideas which later proved fundamental. The freedom 
not to consider practical applications, which von Neu- 
mann demanded for science as a whole, must also be 
demanded within mathematics. 

One could object that this analogy between mathe- 
matics and natural sciences overlooks one essential dif- 
ference: In the natural sciences or in technology one 
often encounters problems that one has to solve in 
order to advance at all. In the world of mathematical 
thought, one has still de jure the freedom to put aside 
apparently unsolvable, overly difficult problems and 
turn to other, more manageable ones; and maybe, in 
fact, follow the path of least resistance just as von Neu- 
mann had feared. Wouldn' t  that be a temptation for a 
mathematician who defines mathematics as "the art of 
finding problems that one can solve"? Interestingly 
enough, I heard this definition from a mathematician 
whose works are especially remarkable because they 
treated so many problems which seemed quite special 
at the time but which later proved fundamental and 
whose solutions opened up new paths, namely, Heinz 
Hopf. 

It cannot be denied, however, that sometimes paths 
of least resistance are indeed fol lowed,  leading to 
trivial or meaningless work. It can also happen that a 
successful school later falls into a sterile period and 
then even, at worst, exerts a harmful influence. Re- 
markably enough, however,  an antidote always comes 

along, a reaction which el iminates these mistaken 
paths and fruitless directions. Up until now mathe- 
matics has always been able to overcome such growth 
diseases, and I am convinced that it will always do so 
as long as there are so many talented mathematicians. 
It is very odd, however: Many of us have this feeling 
of a unity in mathematics, but it is dangerous to pre- 
scribe overly precise guidelines in the name of our con- 
ception of it. It is more important that freedom reign 
despite occasional misuse. Why this is so successful 
cannot be fully explained. If one thinks of Hopf, for 
example, one can, to a certain extent, see rational cri- 
teria in his choice of problems: They were for instance 
often the first special cases of a general problem for 
which known methods of proof were not applicable. 
He was of course aware of this. But that doesn't  ex- 
plain everything. He probably didn't always foresee 
how influential his work would  become; and most  
likely did not worry about it. It is simply a part of the 
talent of a mathematician to be drawn to "good" prob- 
lems, i.e., to problems which turn out to be significant 
later, even if it is not obvious at the time he takes them 
up. The mathematician is led to this partly by rational, 
scientific observations, partly by sheer curiosity, in- 
stinct, intuit ion,  pure ly  aesthetic considerat ions.  
Which brings me to my final subject, the aesthetic 
feeling in mathematics. 

I already mentioned the idea of mathematics as an 
art, a poetry of ideas. With that as a starting point, 
one would conclude that, in order for one to appreciate 
mathematics, to enjoy it, one needs a unique feeling 
for intellectual elegance and beauty of ideas in a very 
special world of thought. It is not surprising that this 
can hardly be shared with nonmathematicians: Our 
poems are written in a highly specialized language, 
the mathematical language; although it is expressed in 
many of the more familiar languages, it is nevertheless 
unique and translatable into no other language; un- 
fortunately, these poems can only be understood in 
the original. The resemblance to an art is clear. One 
must also have a certain education for the appreciation 
of music or painting, which is to say one must learn a 
certain language. 

I have long agreed with such opinions and analo- 
gies. Without changing my fundamental position with 
regard to mathematics, I would nonetheless like to re- 
formulate them somewhat in the direction of my pre- 
vious statements. I believe that our aesthetics are not 
always so pure and esoteric but  also include a few 
more  earthly yardst icks such as meaning,  conse- 
quences,  applicability, u s e f u l n e s s - - b u t  within the 
mathematical science. Our judgment of a theorem, a 
theory, a proof is also influenced by this, but it is often 
simply equated to the aesthetic. I would like to try to 
explain this using Galois' theory, mentioned earlier. 
This theory is generally treasured as one of the most 
beautiful  chapters  in mathematics .  Why? First, it 
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solved a very old and,  at that  time, the most  important  
question about  equations. Second, it is an extremely 
comprehensive theory that goes far beyond  the orig- 
inal ques t ion  of solvabi l i ty  by radicals .  Third,  it is 
based on only a few principles of great elegance and 
simplicity which are formulated within a new frame- 
work  wi th  n e w  concepts  which  d e m o n s t r a t e  the 
greatest originality. Fourth,  these new viewpoints and 
concepts, especially the concept of group,  opened new 
pa ths  and  h a d  a las t ing  inf luence  on the  whole  of 
mathematics. 

You will notice that  of these four points only the 
thi rd  is a t ru ly  aes the t ic  j u d g m e n t ,  a n d  one about  
which one can have one's  own opinion only when  one 
unders tands  the technical details of the theory. The 
others have a different character. One  could make sim- 
ilar s tatements  about  theories in any  natural science. 
They have a greater objective content,  and a mathe- 
matician can have his own opinion about  them even 
if he doesn ' t  fully grasp the technical details of the 
theory. For the purpose of this discussion I have sep- 
arated these four elements,  but  normally I would not 
always do so explicitly, and all four contribute to the 
impression of beauty.  I do think that  in this respect 
this example  is fair ly typical:  W h a t  we  describe as 
aesthetic is actually often a fusion of different views. 
For example, I would  naturally find a me thod  of proof 
more beautiful if it found new and unexpected appli- 
cations, a l though the method  itself hadn ' t  changed. It 
may have become more important,  but  in and of itself 
not more beautiful.  Since all this takes place within 
mathematics itself, it will hardly help the nonmathe-  
matician penetrate our  aesthetic world. I hope, how- 
ever, that it will help him find more plausible the fact 
that our so-called aesthetic judgments  display a greater 
consensus than  in art, a consensus that  goes far be- 
y o n d  geographical  and  chronological  l imitations.  In 
any case, I regard this as being a major factor. But once 
again, I must  avoid taking this too far. It is a question 
of degree,  no t  an  absolute  difference.  An  aesthetic 
judgment  on the work of a composer or a painter also 
draws on external factors such as influence, predeces- 
sors, the posit ion of the work with relation to other 
works, even if it is to a lesser extent. On the other 
hand,  there are differences of opinion and  fluctuations 
in t ime in the  eva lua t ion  of ma thema t i ca l  works ,  
though  not  to such a strong degree, I would  add. All 
these nuances need a good deal of explanation which 
I cannot go into here for lack of time. 

In the l imi ted  a m o u n t  of t ime at m y  disposal ,  it 
would of course be easier to make only sweeping short 
statements about  mathematics.  But unfortunately,  or 
fortunately, just  as in other h u m a n  under takings  to 
which many  people contributed over m a n y  centuries, 
mathematics refuses to let itself be described by just a 
few simple formulas.  Almost  every general s tatement 
about mathematics  has to be qualified somehow.  One 
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exception, perhaps the only one, might  be this state- 
men t  itself. I hope I have at least given the impression 
tha t  ma themat i c s  is an ex t remely  complex creat ion 
which  displays  so m a n y  essent ial  traits in c o m m o n  
with art and experimental and  theoretical sciences that  
it has to be regarded as all three at the same time, and 
thus  mus t  be differentiated from all three as well. 

I am aware that  I have raised more questions than I 
have answered,  treated too briefly those I have dis- 
cussed and  not  even touched upon  some important  
ones, such as the value of this creation. One can of 
course point  to innumerable  applications in the natural  
sciences and in engineering, many  of which have a 
great influence on our daily life, thereby establishing 
a social right to existence for mathematics.  But I mus t  
confess that, as a pure mathematician,  I am more in- 
terested in an assessment  of mathematics  in itself. The 
contributions of the various mathematicians meld into 
an e n o r m o u s  in te l lec tual  cons t ruc t  which ,  in m y  
opinion,  represents  an impress ive  t e s t imony  to the 
power  of h u m a n  thinking. The mathematician Jacobi 
once wrote  that  " the  on ly  purpose  of science is to 
honor  the h u m a n  mind"  [23]. I believe that this cre- 
ation does indeed do the h u m a n  mind great honor.  

The Institute for Advanced Study 
Princeton, New Jersey 08540 
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