

THE IVY LEAGUE Education Center

AMC 12/AHSME

2009

A

1 Kim's flight took off from Newark at 10:34 AM and landed in Miami at 1:18 PM. Both cities are in the same time zone. If her flight took h hours and m minutes, with $0 < m < 60$, what is $h + m$?

(A) 46 (B) 47 (C) 50 (D) 53 (E) 54

2 Which of the following is equal to $1 + \frac{1}{1 + \frac{1}{1 + 1}}$?

(A) $\frac{5}{4}$ (B) $\frac{3}{2}$ (C) $\frac{5}{3}$ (D) 2 (E) 3

3 What number is one third of the way from $\frac{1}{4}$ to $\frac{3}{4}$?

(A) $\frac{1}{3}$ (B) $\frac{5}{12}$ (C) $\frac{1}{2}$ (D) $\frac{7}{12}$ (E) $\frac{2}{3}$

4 Four coins are picked out of a piggy bank that contains a collection of pennies, nickels, dimes, and quarters. Which of the following could *not* be the total value of the four coins, in cents?

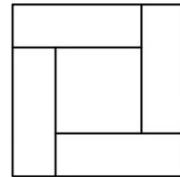
(A) 15 (B) 25 (C) 35 (D) 45 (E) 55

5 One dimension of a cube is increased by 1, another is decreased by 1, and the third is left unchanged. The volume of the new rectangular solid is 5 less than that of the cube. What was the volume of the cube?

(A) 8 (B) 27 (C) 64 (D) 125 (E) 216

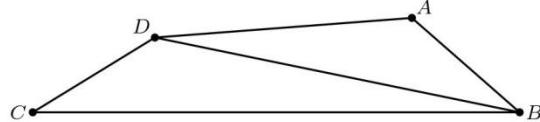
6 Suppose that $P = 2^m$ and $Q = 3^n$. Which of the following is equal to 12^{mn} for every pair of integers (m, n) ?

(A) P^2Q (B) P^nQ^m (C) P^nQ^{2m} (D) $P^{2m}Q^n$ (E) $P^{2n}Q^m$

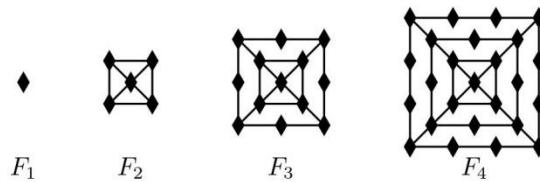

7 The first three terms of an arithmetic sequence are $2x - 3$, $5x - 11$, and $3x + 1$ respectively. The n th term of the sequence is 2009. What is n ?

(A) 255 (B) 502 (C) 1004 (D) 1506 (E) 8037

8 Four congruent rectangles are placed as shown. The area of the outer square is 4 times that of the inner square. What is the ratio of the length of the longer side of each rectangle to the length of its shorter side?


AMC 12/AHSME
2009

(A) 3 (B) $\sqrt{10}$ (C) $2 + \sqrt{2}$ (D) $2\sqrt{3}$ (E) 4

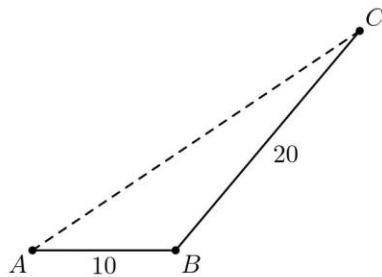

9 Suppose that $f(x+3) = 3x^2 + 7x + 4$ and $f(x) = ax^2 + bx + c$. What is $a + b + c$?
 (A) -1 (B) 0 (C) 1 (D) 2 (E) 3

10 In quadrilateral $ABCD$, $AB = 5$, $BC = 17$, $CD = 5$, $DA = 9$, and BD is an integer. What is BD ?

(A) 11 (B) 12 (C) 13 (D) 14 (E) 15

11 The figures F_1 , F_2 , F_3 , and F_4 shown are the first in a sequence of figures. For $n \geq 3$, F_n is constructed from F_{n-1} by surrounding it with a square and placing one more diamond on each side of the new square than F_{n-1} had on each side of its outside square. For example, figure F_3 has 13 diamonds. How many diamonds are there in figure F_{20} ?

(A) 401 (B) 485 (C) 585 (D) 626 (E) 761


12 How many positive integers less than 1000 are 6 times the sum of their digits?
 (A) 0 (B) 1 (C) 2 (D) 4 (E) 12

AMC 12/AHSME

2009

13 A ship sails 10 miles in a straight line from A to B , turns through an angle between 45° and 60° , and then sails another 20 miles to C . Let AC be measured in miles. Which of the following intervals contains AC^2 ?

(A) [400, 500] (B) [500, 600] (C) [600, 700] (D) [700, 800] (E) [800, 900]

14 A triangle has vertices $(0, 0)$, $(1, 1)$, and $(6m, 0)$, and the line $y = mx$ divides the triangle into two triangles of equal area. What is the sum of all possible values of m ?

(A) $-\frac{1}{3}$ (B) $-\frac{1}{6}$ (C) $\frac{1}{6}$ (D) $\frac{1}{3}$ (E) $\frac{1}{2}$

15 For what value of n is $i + 2i^2 + 3i^3 + \dots + ni^n = 48 + 49i$?

Note: here $i = \sqrt{-1}$.

(A) 24 (B) 48 (C) 49 (D) 97 (E) 98

16 A circle with center C is tangent to the positive x and y -axes and externally tangent to the circle centered at $(3, 0)$ with radius 1. What is the sum of all possible radii of the circle with center C ?

(A) 3 (B) 4 (C) 6 (D) 8 (E) 9

17 Let $a + ar_1 + ar_1^2 + ar_1^3 + \dots$ and $a + ar_2 + ar_2^2 + ar_2^3 + \dots$ be two different infinite geometric series of positive numbers with the same first term. The sum of the first series is r_1 , and the sum of the second series is r_2 . What is $r_1 + r_2$?

(A) 0 (B) $\frac{1}{2}$ (C) 1 (D) $\frac{1+\sqrt{5}}{2}$ (E) 2

18 For $k > 0$, let $I_k = 10 \dots 064$, where there are k zeros between the 1 and the 6. Let $N(k)$ be the number of factors of 2 in the prime factorization of I_k . What is the maximum value of $N(k)$?

(A) 6 (B) 7 (C) 8 (D) 9 (E) 10

THE IVY LEAGUE Education Center

AMC 12/AHSME

2009

[19] Andrea inscribed a circle inside a regular pentagon, circumscribed a circle around the pentagon, and calculated the area of the region between the two circles. Bethany did the same with a regular heptagon (7 sides). The areas of the two regions were A and B , respectively. Each polygon had a side length of 2. Which of the following is true?

(A) $A = \frac{25}{49}B$ (B) $A = \frac{5}{7}B$ (C) $A = B$ (D) $A = \frac{7}{5}B$ (E) $A = \frac{49}{25}B$

[20] Convex quadrilateral $ABCD$ has $AB = 9$ and $CD = 12$. Diagonals AC and BD intersect at E , $AC = 14$, and $\triangle AED$ and $\triangle BEC$ have equal areas. What is AE ?

(A) $\frac{9}{2}$ (B) $\frac{50}{11}$ (C) $\frac{21}{4}$ (D) $\frac{17}{3}$ (E) 6

[21] Let $p(x) = x^3 + ax^2 + bx + c$, where a , b , and c are complex numbers. Suppose that

$$p(2009 + 9002\pi i) = p(2009) = p(9002) = 0$$

What is the number of nonreal zeros of $x^{12} + ax^8 + bx^4 + c$?

(A) 4 (B) 6 (C) 8 (D) 10 (E) 12

[22] A regular octahedron has side length 1. A plane parallel to two of its opposite faces cuts the octahedron into the two congruent solids. The polygon formed by the intersection of the plane and the octahedron has area $\frac{a\sqrt{b}}{c}$, where a , b , and c are positive integers, a and c are relatively prime, and b is not divisible by the square of any prime. What is $a + b + c$?

(A) 10 (B) 11 (C) 12 (D) 13 (E) 14

[23] Functions f and g are quadratic, $g(x) = -f(100 - x)$, and the graph of g contains the vertex of the graph of f . The four x -intercepts on the two graphs have x -coordinates x_1 , x_2 , x_3 , and x_4 , in increasing order, and $x_3 - x_2 = 150$. The value of $x_4 - x_1$ is $m + n\sqrt{p}$, where m , n , and p are positive integers, and p is not divisible by the square of any prime. What is $m + n + p$?

(A) 602 (B) 652 (C) 702 (D) 752 (E) 802

[24] The *tower function of twos* is defined recursively as follows: $T(1) = 2$ and $T(n + 1) = 2^{T(n)}$ for $n \geq 1$. Let $A = (T(2009))^{T(2009)}$ and $B = (T(2009))^A$. What is the largest integer k such that

$$\underbrace{\log_2 \log_2 \log_2 \dots \log_2 B}_{k \text{ times}}$$

is defined?

(A) 2009 (B) 2010 (C) 2011 (D) 2012 (E) 2013

[25] The first two terms of a sequence are $a_1 = 1$ and $a_2 = \frac{1}{\sqrt{3}}$. For $n \geq 1$,

$$a_{n+2} = \frac{a_n + a_{n+1}}{1 - a_n a_{n+1}}.$$

THE IVY LEAGUE Education Center

AMC 12/AHSME 2009

What is $|a_{2009}|$?

(A) 0 (B) $2 - \sqrt{3}$ (C) $\frac{1}{\sqrt{3}}$ (D) 1 (E) $2 + \sqrt{3}$

2009 AMC 12A Answer Key

1. A
2. C
3. B
4. A
5. D
6. E
7. B
8. A
9. D
10. C
11. E
12. B
13. D
14. B
15. D
16. D
17. C
18. B
19. C
20. E
21. C
22. E
23. D
24. E
25. A