

AMC 10/12 Prep Course

 (Tutorial Handout Sample)

Topic:

Angle Bisectors

© Henry Wan, Ph.D.

Contents

1. Introduction 4
2. Fundamental Results 5
3. Proofs of Angle Bisector Theorem 6
3.1. Method 1 6
3.2. Method 2 8
3.3. Method 3 9
3.1. Method 4 10
3.2. Method 5 11
3.3. Method 6 12
4. Proofs of the Formula for the Length of An Angle Bisector 14
4.1. First Proof 14
4.2. Second Proof 16
4.3. Third Proof 18
5. Problem Solving 20
5.1. Example 1 20
5.2. Example 2 21
5.3. Example 3 23
5.4. Example 4 28
5.5. Example 5 29
5.6. Example 6 34
5.7. Example 7 37
5.8. Example 8 40
5.9. Example 9 40
6. Classwork 43
6.1.Exercise Set I 43
6.2. Exercise Set II 45
7. Homework 47
7.1. Problem Set I 47
7.2. Problem Set II 50
7.3. Problem Set III 54
7.4. Problem Set IV (Bonus) 58

1. Introduction

In geometry, the angle bisector theorem is concerned with the relative lengths of the two segments that a triangle's side is divided into by a line that bisects the opposite angle. It equates their relative lengths to the relative lengths of the other two sides of the triangle.

The angle bisector theorem frequently show up as an important intermediate step in problems involving the measurements of triangles. The theorem can be utilized to quickly and efficiently solve many difficult geometry problems on the AMC 10/12, AIME, and Olympiads.

Important Strategy:

- Keyword Based Indication: If the keyword phrase "angle bisector" or "bisects the angle" is presented in a problem, you can definitely use the Angle Bisector Theorem.

2. Fundamental Results

To bisect an angle means to cut it into two equal parts or angles. Angle bisectors in a triangle have a characteristic property of dividing the opposite side in the ratio of the adjacent sides.

Result 1: Angle Bisector Theorem

Let $A D$ be the bisector of $\angle A$ with D on $B C$ in $\triangle A B C$. If $b=A C, c=A B, m=B D$, and $n=C D$, then

$$
\frac{c}{m}=\frac{b}{n} .
$$

Likewise, the converse of this theorem holds as well.

Result 2: The Formula for the Length of an Angle Bisector

Let $A D$ be the angle bisector of $\angle A$ with D on $B C$ in $\triangle A B C$. Let $d=A D, m=B D$, and $n=C D$.
Then

$$
d^{2}=b c-m n=\frac{b c}{(b+c)^{2}}\left((b+c)^{2}-a^{2}\right)
$$

where a, b, and c are the sides opposite A, B, and C, respectively.

3. Proofs of Angle Bisector Theorem

Angle Bisector Theorem

The Angle Bisector Theorem states that given triangle $\triangle A B C$ and angle bisector $A D$, where D is on side $B C$,

$$
\frac{c}{m}=\frac{b}{n}
$$

Likewise, the converse of this theorem holds as well.

We will develop six methods to prove this important theorem.

Method 1

Construct a line parallel to $A D$ and ray $B A$ to intersect at E, as shown below.

Note that $\angle B A D=\angle D A C$ (bisected angle), $\angle B A D=\angle A E C$ (corresponding angles), and $\angle D A C=\angle A C E$ (alternate interior angles). Thus,

$$
\angle A E C=\angle A C E,
$$

which implies that $\triangle A C E$ is isosceles and

$$
A E=A C=b
$$

By the side-splitter theorem, we get

$$
\frac{A B}{A E}=\frac{B D}{C D} .
$$

Since $A E=A C$, it follows that

$$
\frac{c}{b}=\frac{m}{n} .
$$

Method 2

Because of the ratios and equal angles in the theorem, we think of similar triangles. There are not any similar triangles in the figure as it now stands, however. So, we think to draw in a carefully chosen line or two. Extending $A D$ until it hits the line through C parallel to $A B$ does just the trick, as shown below:

Since $A B \| C E$, it follows that

$$
\angle B A E=\angle C E A \text { and } \angle B C E=\angle A B C .
$$

Now we have:

$$
\angle C E A=\angle B A E=\angle C A E .
$$

Thus, $\triangle A C E$ is isosceles, with

$$
A C=C E=b
$$

By the AA similarity postulate,

$$
\triangle D A B \cong \triangle D E C
$$

By the properties of similar triangles, we arrive at our desired result:

$$
\frac{c}{m}=\frac{b}{n} .
$$

Method 3

Since $\triangle A B D$ and $\triangle A C D$ have the same altitude, it follows that

$$
\frac{\operatorname{Area}(\triangle A B D)}{\operatorname{Area}(\triangle A C D)}=\frac{m}{n}
$$

Now let E and F be the feet of the perpendiculars from D to $A B$ and $A C$, respectively. Recall that every point on the angle bisector of an angle is equidistant to the sides of the angle. So the height h to $A B$ is equal to the height to $A C$. Thus

$$
\frac{\operatorname{Area}(\triangle A B D)}{\operatorname{Area}(\triangle A C D)}=\frac{\frac{c h}{2}}{\frac{b h}{2}}=\frac{c}{b}
$$

Hence

$$
\frac{c}{b}=\frac{m}{n},
$$

or

$$
\frac{c}{m}=\frac{b}{n} .
$$

We can prove the converse by the Phantom Point Method, since we can find m and n in terms of a, b, and c, and prove that the points are the same.

Method 4

Let E and F be the feet of the perpendiculars from D to $A B$ and $A C$, respectively. Let G be the foot of perpendicular from A to $B C$. In addition, let $D E=x$ and $A G=y$. Note that

$$
\angle A D E=\angle A D F .
$$

According to the ASA congruence rule, right triangles $A D E$ and $A D F$ are congruent. Thus,

$$
D E=D F=x
$$

By finding the area of a right triangle in two different ways, we have

$$
\operatorname{Area}(\triangle A B D)=\frac{1}{2} c x=\frac{1}{2} m y
$$

and

$$
\operatorname{Area}(\triangle A C D)=\frac{1}{2} b x=\frac{1}{2} n y .
$$

Hence,

$$
\frac{y}{x}=\frac{c}{m}=\frac{b}{n} .
$$

Method 5

Let $A D=d$. Using the side-angle-side method, we can express the area of $\triangle A B D$ in two ways:

$$
\operatorname{Area}(\triangle A B D)=\frac{1}{2} c d \sin \angle B A D=\frac{1}{2} m d \sin \angle A D B
$$

which implies that

$$
\frac{\sin \angle A D B}{\sin \angle B A D}=\frac{c}{m} .
$$

Likewise, $\triangle A C D$ can be expressed in two different ways:

$$
\begin{aligned}
\operatorname{Area}(\triangle A C D)= & \frac{1}{2} b d \sin \angle C A D=\frac{1}{2} n d \sin \angle A D C, \\
& \frac{\sin \angle A D C}{\sin \angle C A D}=\frac{b}{n} .
\end{aligned}
$$

But $\angle C A D=\angle B A D$ and

$$
\sin \angle A D C=\sin \angle A D B
$$

since $\angle A D C=180^{\circ}-\angle A D B$.
Therefore, we can substitute back into our previous equation to get

$$
\frac{\sin \angle A D B}{\sin \angle B A D}=\frac{b}{n} .
$$

We conclude that

$$
\frac{\sin \angle A D B}{\sin \angle B A D}=\frac{c}{m}=\frac{b}{n} .
$$

In both cases, if we reverse all the steps, we see that everything still holds and thus the converse holds.

Method 6: Trigonometric Approach

Using the Law of Sines for $\triangle A B D$ and $\triangle A C D$, we have

$$
\frac{\sin \alpha}{m}=\frac{\sin \left(180^{\circ}-\beta\right)}{c}
$$

and

$$
\frac{\sin \alpha}{n}=\frac{\sin \beta}{b}
$$

Note that $\sin \left(180^{\circ}-\beta\right)=\sin \beta$. We obtain

$$
\frac{c}{m}=\frac{b}{n}
$$

4. Proofs of the Formula for the Length of An Angle Bisector

Theorem:

Let $A D$ be the angle bisector of $\angle A$ with D on $B C$ in $\triangle A B C$. Let $d=A D, m=B D$, and $n=C D$. Then

$$
d^{2}=b c-m n=\frac{b c}{(b+c)^{2}}\left((b+c)^{2}-a^{2}\right)
$$

where a, b, and c are the sides opposite A, B, and C, respectively.

We will give three proofs to this theorem.

First Proof:

Draw the circumcircle of $\triangle A B C$, extend $A D$ to intersect the circle at E, and connect $C E$.

Recall that in a circle, two inscribed angles with the same intercepted arc are congruent. Thus,

$$
\angle A B D=\angle A E C .
$$

Note that $\angle B A D=\angle E A C$. By the angle-angle similarity criterion, we deduce that

$$
\triangle A B D \sim \triangle A E C .
$$

Thus,

$$
\frac{A E}{c}=\frac{b}{d},
$$

or

$$
D E+d=A F=\frac{b c}{d}
$$

which implies that

$$
D F=\frac{b c-d^{2}}{d}
$$

Using the Intersecting Chord (Power of a Point) Theorem gives

$$
m n=d \cdot D E=d \cdot \frac{b c-d^{2}}{d}=b c-d^{2}
$$

Hence,

$$
d^{2}=b c-m n
$$

Second Proof:

Let E and F be the feet of the perpendiculars from D to $A B$ and $A C$, respectively. Also, let $D E=$ x and $A E=y$. Then

$$
B E=c-y .
$$

Note that $\angle A D F=\angle A D E$. According to the ASA congruence rule,

$$
\triangle A D F \cong \triangle A D E
$$

so

$$
D F=D E=x, \quad A F=A E=y, \text { and } \quad C F=b-y .
$$

Applying the Pythagorean Theorem to $\triangle A D E, \triangle B D E$, and $\triangle C D F$, respectively, gives:

$$
\begin{gather*}
d^{2}=x^{2}+y^{2}, \tag{1}\\
m^{2}=x^{2}+(c-y)^{2} \tag{2}\\
n^{2}=x^{2}+(b-y)^{2} . \tag{3}
\end{gather*}
$$

Subtracting the first equation from the second yields:

$$
m^{2}-d^{2}=-2 c y+c^{2}
$$

or

$$
\begin{equation*}
m^{2}=d^{2}-2 c y+c^{2} \tag{4}
\end{equation*}
$$

Similarly, we have:

$$
\begin{equation*}
n^{2}=d^{2}-2 b y+b^{2} \tag{5}
\end{equation*}
$$

Multiplying Equation (4) by b, multiplying Equation (5) by - c, and then adding the two equations, we obtain:

$$
m^{2} b-n^{2} c=d^{2} b-d^{2} c+b c^{2}-c b^{2}=(b-c)\left(d^{2}-b c\right)
$$

Using the angle bisector theorem gives:

$$
b m=c n .
$$

Thus,

$$
m^{2} b-n^{2} c=m(b m)-n(c n)=m(c n)-n(b m)=(b-c) m n,
$$

which implies that

$$
(b-c) m n=(b-c)\left(d^{2}-b c\right)
$$

Hence,

$$
d^{2}=b c-m n
$$

Note that

$$
\frac{m}{n}=\frac{c}{b},
$$

yielding

$$
\frac{a}{n}=\frac{m+n}{n}=\frac{c+b}{b} .
$$

Thus,

$$
n=\frac{a b}{b+c} .
$$

Similarly, or by symmetry, we have:

$$
m=\frac{a c}{b+c} .
$$

Hence,

$$
d^{2}=b c-m n=b c-\frac{a c}{b+c} \cdot \frac{a b}{b+c}=\frac{b c}{(b+c)^{2}}\left((b+c)^{2}-a^{2}\right) .
$$

Third Proof:

We use Stewart's Theorem to find the length of an angle bisector.

Recall that Stewart's Theorem states that in $\triangle A B C$ with sides a, b, and c, if D is a point on $B C$ such that $B D=m, D C=n$, and $A D=t$, then

$$
t^{2}=\frac{b^{2} m+c^{2} n}{m+n}-m n
$$

If $A D$ is the angle bisector of $\angle A$, then by Stewart's Theorem,

$$
A D^{2}=\frac{b^{2} m+c^{2} n}{m+n}-m n
$$

By the angle bisector theorem,

$$
b m=c n .
$$

Therefore,

$$
A D^{2}=\frac{b(b m)+c(c n)}{m+n}-m n=\frac{b(c n)+c(b m)}{m+n}-m n=b c-m n
$$

5. Problem Solving

Example 1. 2022 AMC 10A \#13
Let $\triangle A B C$ be a scalene triangle. Point P lies on $\overline{B C}$ so that $\overline{A P}$ bisects $\angle B A C$. The line through B perpendicular to $\overline{A P}$ intersects the line through A parallel to $\overline{B C}$ at point D. Suppose $B P=2$ and $P C=3$.

What is $A D$?
(A) 8
(B) 9
(C) 10
(D) 11
(E) 12

Answer:
(C)

Solution:

Let $\overline{B D}$ intersect $\overline{A P}$ and $\overline{A C}$ at X and Y, respectively. By the ASA congruence postulate,

$$
\triangle A B X \cong \triangle A Y X
$$

Now let $A B=A Y=2 t$. Then by the Angle Bisector Theorem,

$$
A C=3 t
$$

so

$$
C Y=t
$$

By the Alternate Interior Angles Theorem,

$$
\angle Y A D=\angle Y C B \quad \text { and } \quad \angle Y D A=\angle Y B C .
$$

By the AA similarity criteria,

$$
\triangle A D Y \sim \triangle C B Y
$$

with the ratio of similitude

$$
\frac{A Y}{C Y}=2
$$

Hence,

$$
A D=2 C B=2(B P+P C)=2(2+3)=10
$$

Example 2: 2016 MathCounts National Sprint \#30

In isosceles triangle $A B C$ with base $B C$ of length 23 cm , points P and Q are chosen on side $B C$ with $B P=Q C=9 \mathrm{~cm}$. If segments $A P$ and $A Q$ trisect angle $B A C$, what is the perimeter of triangle $A B C$?

Answer: 50

Solution 1:

Note that

$$
P Q=B C-B P-Q C=23-9-9=5
$$

By the angle-bisector theorem,

$$
\frac{A B}{A Q}=\frac{9}{5} .
$$

Now let

$$
A B=9 x \quad \text { and } \quad A Q=5 x
$$

By symmetry,

$$
A P=A Q=5 x
$$

Using the angle bisector length formula,

$$
A P^{2}=A B \cdot A Q-B P \cdot P Q
$$

Thus,

$$
(5 x)^{2}=9 x \cdot 5 x-9 \cdot 5
$$

which implies that

$$
x=\frac{3}{2} .
$$

Hence, the perimeter of triangle $A B C$ is:

$$
18 x+23=18 \times \frac{3}{2}+23=50
$$

Solution 2:

Let D be the foot of the perpendicular from A to $B C$, and $A D=h$. Then

$$
P D=\frac{P Q}{2}=\frac{5}{2} .
$$

Applying the Pythagorean Theorem to $\triangle A B D$ and $\triangle A P D$, we have:

$$
\begin{aligned}
& h^{2}=(9 x)^{2}-\left(\frac{23}{2}\right)^{2} \\
& h^{2}=(5 x)^{2}-\left(\frac{5}{2}\right)^{2}
\end{aligned}
$$

Thus,

$$
(9 x)^{2}-\left(\frac{23}{2}\right)^{2}=(5 x)^{2}-\left(\frac{5}{2}\right)^{2}
$$

which implies that

$$
x=\frac{3}{2} .
$$

Therefore, the perimeter of triangle $A B C$ is:

$$
18 x+23=18 \times \frac{3}{2}+23=50
$$

Example 3: 2018 AMC 10A \#24

Triangle $A B C$ with $A B=50$ and $A C=10$ has area 120 . Let D be the midpoint of $\overline{A B}$, and let E be the midpoint of $\overline{A C}$. The angle bisector of $\angle B A C$ intersects $\overline{D E}$ and $\overline{B C}$ at F and G, respectively. What is the area of quadrilateral $F D B G$?
(A) 60
(B) 65
(C) 70
(D) 75
(E) 80

Answer: (D)
Solution 1

Let a be the height of $\triangle A B C$ and $B C=a$. Then

$$
\operatorname{Area}(\triangle A B C)=\frac{a h}{2}=120
$$

which implies that

$$
a h=240 .
$$

Using the angle bisector theorem,

$$
\frac{B G}{A B}=\frac{C G}{A C},
$$

which gives:

$$
\frac{B G}{C G}=\frac{A B}{A C}=\frac{50}{10}=5
$$

Thus,

$$
B G=\frac{5}{5+1} B C=\frac{5 a}{6} .
$$

Since D and E are, respectively, the midpoints of $\overline{A B}$ and $\overline{A C}$, it follows that F is the midpoint of $\overline{A G}$. Thus, $\triangle A B G$ and $\triangle A D F$ are similar with a scale factor of 2 . So

$$
D F=\frac{B G}{2}=\frac{5 a}{12} .
$$

Hence, the area of trapezoid $F D B G$ with upper base $D F$, lower base $B G$, and height $\frac{h}{2}$ is:

$$
\frac{D F+B G}{2} \cdot \frac{h}{2}=\frac{\frac{5 a}{12}+\frac{5 a}{6}}{2} \cdot \frac{h}{2}=\frac{5 a h}{16}=\frac{5 \times 240}{16}=75 .
$$

Solution 2

Since the angle bisector $A G$ splits the segment in the same ratio as $\frac{A B}{A C}$, it follows that:

$$
\frac{B G}{C G}=\frac{A B}{A C}=\frac{50}{10}=5 .
$$

Recall that triangles of equal heights have areas propositional to their corresponding bases.

Thus,

$$
\frac{\operatorname{Area}(\triangle A B G)}{\operatorname{Area}(\triangle A C G)}=\frac{B G}{C G}=5
$$

which implies that

$$
\operatorname{Area}(\triangle A B G)=\frac{5}{5+1} \operatorname{Area}(\triangle A B C)=\frac{5}{6} \times 120=100
$$

Since $D F$ is midsegment of $\triangle A B G$, it follows that $\triangle A B G$ and $\triangle A D F$ are similar with a scale factor of 2 , and so

$$
\frac{\operatorname{Area}(\triangle A B G)}{\operatorname{Area}(\triangle A D F)}=2^{2}=4
$$

which implies that

$$
\operatorname{Area}(\triangle A D F)=\frac{\operatorname{Area}(\triangle A B G)}{4}=\frac{100}{4}=25 .
$$

Hence,
Area $($ Quadrilateral $F D B G)=\operatorname{Area}(\triangle A B G)-\operatorname{Area}(\triangle A D F)=100-25=75$.
Solution 3

Connect $B F$. Using the angle bisector theorem, we have

$$
\frac{B G}{C G}=\frac{A B}{A C}=\frac{50}{10}=5
$$

Recall that triangles of equal heights have areas propositional to their corresponding bases. Thus,

$$
\frac{\operatorname{Area}(\triangle A B G)}{\operatorname{Area}(\triangle A C G)}=\frac{B G}{C G}=5
$$

which implies that

$$
\operatorname{Area}(\triangle A B G)=\frac{5}{5+1} \operatorname{Area}(\triangle A B C)=\frac{5}{6} \times 120=100
$$

Since F is the midpoint of $A G$, we have:

$$
\frac{\operatorname{Area}(\triangle B G F)}{\operatorname{Area}(\triangle B A F)}=\frac{G F}{A F}=1
$$

which yields:

$$
\operatorname{Area}(\triangle B G F)=\operatorname{Area}(\Delta B A F)=\frac{\operatorname{Area}(\Delta A B G)}{2}=\frac{100}{2}=50 .
$$

Similarly,

$$
\operatorname{Area}(\triangle F B D)=\operatorname{Area}(\triangle F A D)=\frac{\operatorname{Area}(\Delta B A F)}{2}=\frac{50}{2}=25
$$

Hence,

$$
\text { Area }(\text { Quadrilateral } F D B G)=\operatorname{Area}(\Delta B G F)+\operatorname{Area}(\triangle F B D)=50+25=75
$$

Solution 4

Note that $D E$ is midsegment of $\triangle A B C$. Thus, $\triangle A B C$ and $\triangle A D E$ are similar with a scale factor of 2 . So

$$
\frac{\operatorname{Area}(\triangle A B C)}{\operatorname{Area}(\triangle A D E)}=2^{2}=4
$$

which implies that

$$
\operatorname{Area}(\triangle A D E)=\frac{\operatorname{Area}(\triangle A B C)}{4}=\frac{120}{4}=30
$$

Subsequently,

$$
\text { Area }(\text { Quadrilateral } E D B C)=\operatorname{Area}(\triangle A B C)-\operatorname{Area}(\triangle A D E)=120-30=90 .
$$

Example 4: 2000 AMC 12 \#19

In triangle $A B C, A B=13, B C=14, A C=15$. Let D denote the midpoint of $\overline{B C}$ and let E denote the intersection of $\overline{B C}$ with the bisector of angle $B A C$. Which of the following is closest to the area of the triangle $A D E$?
(A) 2
(B) 2.5
(C) 3
(D) 3.5
(E) 4

Answer: (C)
Solution

Dropping an altitude from A to $B C$, we can split the large triangle into a 5-12-13 and a 9-12-15 triangle. So the altitude has length 12.

By the Angle Bisector Theorem,

$$
\frac{13}{B E}=\frac{15}{14-B E}
$$

which implies that

$$
B E=\frac{13}{2} .
$$

Since D is the midpoint of $B C$, it follows that $B D=7$. Thus, the base of $\triangle A D E$ is:

$$
D E=B D-B E=7-\frac{13}{2}=\frac{1}{2} .
$$

Hence, the area of $\triangle A D E$ is:

$$
\frac{\frac{1}{2} \times 12}{2}=3
$$

Example 5:

In triangle $A B C$, side $A C$ and the perpendicular bisector of $B C$ meet in point D, and $B D$ bisects $\angle A B C$. If $A D=9$ and $D C=7$, what is the area of triangle $A B D$?
(A) 14
(B) 21
(C) 28
(D) $14 \sqrt{ } 5$
(E) $28 \sqrt{5}$

Answer: (D)
Solution 1

By the angle-bisector theorem,

$$
\frac{A B}{B C}=\frac{9}{7}
$$

Now let

$$
A B=9 x \quad \text { and } \quad B C=7 x
$$

Let M be the midpoint of $B C$. Since M is on the perpendicular bisector of $B C$, it follows that

$$
B D=D C=7
$$

Using the formula for the length of an angle bisector, we have

$$
B D^{2}=A B \cdot B C-A D \cdot D C
$$

Thus,

$$
7^{2}=9 x \cdot 7 x-9 \cdot 7
$$

which implies that

$$
x=\frac{4}{3} .
$$

So

$$
A B=9 \cdot \frac{4}{3}=12
$$

The semiperimeter of $\triangle A B D$ is:

$$
\frac{12+7+9}{2}=14
$$

Apply Heron's formula to obtain the area of $\triangle A B D$ with sides 12,7 , and 9 as

$$
\sqrt{14 \cdot(14-12) \cdot(14-7) \cdot(14-9)}=\sqrt{14 \cdot 2 \cdot 5 \cdot 7}=14 \sqrt{5} .
$$

Solution 2

Let M be the midpoint of $B C$. Connect $D M$. Since M is on the perpendicular bisector of $B C$, it follows that

$$
D B=D C=7, \quad \text { and } \quad \angle D B C=\angle D C B .
$$

Note that $\angle D B C=\angle A B D$. Thus,

$$
\angle A B D=\angle D C B .
$$

By the AA Similarity Postulate,

$$
\triangle A B C \sim \triangle A D B
$$

which implies that

$$
\frac{A C}{A B}=\frac{A B}{A D}=\frac{B C}{D B},
$$

or

$$
\frac{16}{A B}=\frac{A B}{9}=\frac{B C}{7}
$$

It follows that

$$
A B=12, \quad B C=\frac{28}{3}
$$

Notice that

$$
B M=\frac{B C}{2}=\frac{14}{3} .
$$

Applying the Pythagorean Theorem to $\triangle C D B$ gives:

$$
D M=\sqrt{D B^{2}-B M^{2}}=\sqrt{7^{2}-\left(\frac{14}{3}\right)^{2}}=\frac{7 \sqrt{5}}{3} .
$$

Now let N be the foot of the perpendicular from D to $A B$. By the ASA congruence criterion,

$$
\triangle D B N \cong \triangle D B M
$$

and so

$$
D N=D M=\frac{7 \sqrt{5}}{3} .
$$

Hence, the area of $\triangle A B D$ is:

$$
\frac{A B \cdot D N}{2}=\frac{12 \cdot \frac{7 \sqrt{5}}{3}}{2}=14 \sqrt{5}
$$

OR
Because $\triangle A B D$ and $\triangle C B D$ have the same height, they have areas propositional to their corresponding bases:

$$
\frac{\operatorname{Area}(\triangle A B D)}{\operatorname{Area}(\triangle C B D)}=\frac{A D}{C D}=\frac{9}{7}
$$

Therefore,

$$
\operatorname{Area}(\triangle A B D)=\frac{9}{7} \operatorname{Area}(\triangle C B D)=\frac{9}{7} \cdot \frac{B C \cdot D M}{2}=\frac{9}{7} \cdot \frac{\frac{28}{3} \cdot \frac{7 \sqrt{5}}{3}}{2}=14 \sqrt{5}
$$

Solution 3

By the angle bisector theorem,

$$
\frac{A B}{B C}=\frac{9}{7} .
$$

Let $A B=9 x$ and $B C=7 x$, let

$$
\angle A B D=\angle C B D=\theta,
$$

and let M be the midpoint of $B C$. Since M is on the perpendicular bisector of $B C$, it follows that

$$
B D=D C=7
$$

Then

$$
\cos \theta=\frac{\frac{7 x}{2}}{7}=\frac{x}{2} .
$$

Applying the Law of Cosines to $\triangle A B D$ yields

$$
9^{2}=(9 x)^{2}+7^{2}-2(9 x)(7) \cos \theta
$$

from which

$$
x=\frac{4}{3}
$$

and then

$$
\cos \theta=\frac{x}{2}=\frac{2}{3} .
$$

Recall that the measure of an exterior angle of a triangle is equal to the sum of the measures of the two non-adjacent interior angles of the triangle. So

$$
\angle A D B=\angle A B D+\angle C B D=2 \theta .
$$

Using the sine double-angle identity, we have:

$$
\sin \angle A D B=2 \sin \theta \cos \theta=2\left(\sqrt{1-\left(\frac{2}{3}\right)^{2}}\right)\left(\frac{2}{3}\right)=\frac{4 \sqrt{5}}{9}
$$

Using the Side-angle-side method, we obtain the area of $\triangle A B D$ as

$$
\frac{1}{2} A D \cdot B D \cdot \sin \angle A D B=\frac{1}{2} \cdot 9 \cdot 7 \cdot \frac{4 \sqrt{5}}{9}=14 \sqrt{5} .
$$

Example 6: 2021 Fall AMC 12A \#13
The angle bisector of the acute angle formed at the origin by the graphs of the lines $y=x$ and $y=3 x$ has equation $y=k x$. What is k ?
(A) $\frac{1+\sqrt{5}}{2}$
(B) $\frac{1+\sqrt{7}}{2}$
(C) $\frac{2+\sqrt{3}}{2}$
(D) 2
(E) $\frac{2+\sqrt{5}}{2}$

Answer:
(A)

Solution 1:
Consider the line $x=1$, which intersects the lines $y=x, y=3 x$, and $y=k x$ at $A=(1,1)$, $B=(1,3)$, and $C=(1, k)$, respectively, as shown below.

Then

$$
O A=\sqrt{2}, O B=\sqrt{10}, A C=k-1, \text { and } B C=3-k .
$$

By the angle bisector theorem,

$$
\frac{B C}{A C}=\frac{O B}{O A}
$$

or

$$
\frac{3-k}{k-1}=\frac{\sqrt{10}}{\sqrt{2}}=\sqrt{5}
$$

for which

$$
k=\frac{\sqrt{5}+1}{2} .
$$

Solution 2:

Consider the isosceles triangle $O A B$ with coordinates

$$
O=(0,0), \quad A=(1,3), \quad B=(\sqrt{5}, \sqrt{5})
$$

Let M be the midpoint of $A B$. Then

$$
M=\left(\frac{1+\sqrt{5}}{2}, \frac{3+\sqrt{5}}{2}\right)
$$

Note that A and B lie on the lines $y=3 x$ and $y=x$, respectively. Since $O M$ is the angle bisector of $\angle A O B$, it follows that M lies on the line $y=k x$. Hence, its slope is:

$$
k=\frac{\frac{3+\sqrt{5}}{2}}{\frac{1+\sqrt{5}}{2}}==\frac{\sqrt{5}+1}{2}
$$

Solution 3:

Consider points $P=(\sqrt{5}, \sqrt{5})$ and $Q=(1,3)$, which lie on the lines $y=x$ and $y=3 x$, respectively. Then the line $y=k x$ is the perpendicular bisector of $P Q$.

Note that the slope of $P Q$ is:

$$
\frac{\sqrt{5}-3}{\sqrt{5}-1}
$$

Thus, the slope of the line $y=k x$ is:

$$
k=-\frac{\sqrt{5}-1}{\sqrt{5}-3}==\frac{\sqrt{5}+1}{2} .
$$

Example 7: 2014 Harvard-MIT Math Tournament Geometry Test \#7

In triangle $A B C, A B=10$ and $A C=16 . D$ is a point on $B C$ such that $A D$ bisects angle $B A C$, and $C D=8$. Find the length of $A D$.

Answer: $\quad 2 \sqrt{30}$

Solution 1:

By the angle bisector theorem,

$$
\frac{A B}{B D}=\frac{A C}{C D} .
$$

Note that $A B=10, A C=16, C D=8$. So

$$
B D=5 .
$$

Using the formula for the length of an angle bisector, we have

$$
A D^{2}=A B \cdot A C-B D \cdot C D=10 \cdot 16-5 \cdot 8=120
$$

Hence,

$$
A D=\sqrt{120}=2 \sqrt{30} .
$$

Solution 2:

By the angle bisector theorem, we get $B D=5$. Let F be the foot of the altitude from D to $A C$.

By the angle bisector theorem, we get

$$
B D=5
$$

Let E be the foot of the perpendicular from A to $B C$. Let $E D=x$ and $A E=h$. Then

$$
B E=5-x
$$

Applying the Pythagorean Theorem to $\triangle A B E$ and $\triangle A C E$, respectively, gives:

$$
h^{2}=10^{2}-(5-x)^{2}=16^{2}-(8+x)^{2} .
$$

Thus,

$$
x=4.5, \quad h^{2}=10^{2}-0.5^{2} .
$$

Now using the Pythagorean Theorem to $\triangle A D E$, we have:

$$
A D=\sqrt{x^{2}+h^{2}}=\sqrt{4.5^{2}+\left(10^{2}-0.5^{2}\right)}=\sqrt{120}=2 \sqrt{30} .
$$

Solution 3:

By the angle bisector theorem, we get $D B=5$. Take a point E on $A C$ such that $A E=A B=10$ and join $D E . \triangle A D E$ is congruent to $\triangle A D B$ by the SAS congruency criterion, and thus

$$
D E=D B=5 .
$$

Let F be the foot of the perpendicular from D to $A C$. Let $E F=x$ and $D F=h$.

Applying the Pythagorean Theorem to $\triangle D F E$ and $\triangle D F C$, we get:

$$
h^{2}=5^{2}-x^{2}=8^{2}-(6+x)^{2} .
$$

Thus, $x=0.25$. Using the Pythagorean Theorem to $\triangle A D E$ and noting that $x^{2}+h^{2}=25$, we have:

$$
\begin{aligned}
A D & =\sqrt{(10-x)^{2}+h^{2}}=\sqrt{100-20 x+\left(x^{2}+h^{2}\right)} \\
& =\sqrt{100-20 \times 0.25+25}=\sqrt{120}=2 \sqrt{30} .
\end{aligned}
$$

Example 8: 2010 Princeton University Math Competition (PUMaC) Geometry A \#3

Triangle $A B C$ has $A B=4, A C=5$, and $B C=6$. An angle bisector is drawn from angle A, and meets $B C$ at M. What is the nearest integer to $100 \frac{A M}{C M}$?

Answer: 100

Solution:

By Angle-Bisector Theorem,

$$
\frac{B M}{C M}=\frac{A B}{A C}=\frac{4}{5},
$$

so

$$
B M=\frac{8}{3}, \quad C M=\frac{10}{3} .
$$

Using the formula for the length of an angle bisector, we have

$$
A M=\sqrt{A B \cdot A C-B M \cdot C M}=\frac{10}{3} .
$$

Hence,

$$
\frac{A M}{C M}=1 .
$$

Example 9: 2013 MathCounts National Sprint \#29

Trapezoid $K L M N$ has sides $K L=80$ units, $L M=60$ units, $M N=22$ units, and $K N=65$ units, with $K L$ parallel to $M N$. A semicircle with center A on $K L$ is drawn tangent to both sides $K N$ and $M L$. What is the length of segment $K A$?

Express your answer as a mixed number.
Answer: $\quad 41 \frac{3}{5}$

Solution:

Extend $L M$ and $K N$ to intersect at P. From N draw a line parallel to $L M$ to meet $L K$ at Q. Then

$$
Q N=L M=60 .
$$

By the AA similarity postulate,

$$
\Delta L P K \sim \Delta Q N K
$$

which implies that

$$
\frac{K P}{L P}=\frac{K N}{Q N}=\frac{65}{60}=\frac{13}{12}
$$

Recall that the line through an external point and the center of a circle bisects the angle formed by the two tangents from the external point. Thus, $P A$ is the angle bisector of $\angle L P K$.

By the angle bisector theorem,

$$
\frac{K A}{L A}=\frac{K P}{L P}=\frac{13}{12}
$$

Hence,

$$
K A=\frac{13}{12+13} K L=\frac{13}{25} \cdot 80=\frac{408}{5}=41 \frac{3}{5} .
$$

CLASSWORK

Exercise Set I

Exercise 1:

In $\triangle A B C, A B=10$, and D is a point on side $B C$ such that $A D$ bisects $\angle B A C$. If $B D=8$ and $C D=4$, then what is the length of $A C$?
(A) 4
(B) $\frac{9}{2}$
(C) 5
(D) $\frac{11}{2}$
(E) 6

Exercise 2:

In $\triangle A B C, \angle A B C=30^{\circ}, D$ is the midpoint on $A C$ such that $B D$ is the bisector of $\angle A B C$. What is the degree measure of $\angle B A C$?
(A) 60°
(B) 75°
(C) 80°
(D) 85°
(E) 90°

Exercise 3:

In $\triangle A B C, A B=10, B C=8, A C=12$. Let D be a point on side $\overline{A B}$ such that $\overline{C D}$ bisects $\angle C$. Then what is the length of $\overline{A D}$?
(A) $\frac{9}{2}$
(B) 5
(C) $\frac{11}{2}$
(D) 6
(E) 7

Exercise 4: 1989 ARML Team \#4

In triangle $A B C$, angle bisectors $A D$ and $B E$ intersect at P. If $a=3, b=5, c=7, B P=x$, and $P E=y$, compute the ratio $x: y$, where x and y are relatively prime integers.

Exercise 5: 1980 ARML Individual \#1

In $\triangle A B C$, the angle bisector $A I$ divides the median $B M$ into two segments of length 200 and 300, and $A I$ divides $B C$ into two segments of length 660 and x. Find the largest possible value of x.

Exercise 6: 2009 AMC 10B \#20

Triangle $A B C$ has a right angle at $B, A B=1$, and $B C=2$. The bisector of $\angle B A C$ meets $\overline{B C}$ at D. What is $B D$?
(A) $\frac{\sqrt{3}-1}{2}$
(B) $\frac{\sqrt{5}-1}{2}$
(C) $\frac{\sqrt{5}+1}{2}$
(D) $\frac{\sqrt{6}+\sqrt{2}}{2}$
(E) $2 \sqrt{3}-1$

Exercise 7: 2010 AMC 10A \#16/2010 AMC 12A \#14

Nondegenerate $\triangle A B C$ has integer side lengths, $\overline{B D}$ is an angle bisector, $A D=3$, and $D C=8$. What is the smallest possible value of the perimeter?
(A) 30
(B) 33
(C) 35
(D) 36
(E) 37

Exercise 8: 2014 AMC 10A \#22

In rectangle $A B C D, \overline{A B}=20$ and $\overline{B C}=10$. Let E be a point on $\overline{C D}$ such that $\angle C B E=15^{\circ}$. What is $\overline{A E}$?
(A) $\frac{20 \sqrt{3}}{3}$
(B) $10 \sqrt{3}$
(C) 18
(D) $11 \sqrt{3}$
(E) 20

Exercise Set II

Exercise 1: 2004 AMC 10B \#24

In triangle $A B C$ we have $A B=7, A C=8$, and $B C=9$. Point D is on the circumscribed circle of the triangle so that $A D$ bisects angle $B A C$. What is the value of $\frac{A D}{C D}$?
(A) $\frac{9}{8}$
(B) $\frac{5}{3}$
(C) 2
(D) $\frac{17}{7}$
(E) $\frac{5}{2}$

Exercise 2: 1966 AHSME \#11

The sides of triangle $B A C$ are in the ratio $2: 3: 4 . B D$ is the angle-bisector drawn to the shortest side $A C$, dividing it into segments $A D$ and $C D$. If the length of $A C$ is 10 , then the length of the longer segment of $A C$ is:
(A) $3 \frac{1}{2}$
(B) 5
(C) $5 \frac{5}{7}$
(D) 6
(E) $7 \frac{1}{2}$

Exercise 3: 1952 AHSME \#19

Angle B of triangle $A B C$ is trisected by $B D$ and $B E$ which meet $A C$ at D and E, respectively. Then:
(A) $\frac{A D}{E C}=\frac{A E}{D C}$
(B) $\frac{A D}{E C}=\frac{A B}{B C}$
(C) $\frac{A D}{E C}=\frac{B D}{B E}$
(D) $\frac{A D}{E C}=\frac{(A B)(B D)}{(B E)(B C)}$
(E) $\frac{A D}{E C}=\frac{(A E)(B D)}{(D C)(B E)}$

Exercise 4: 2010 Stanford Math Tournament Geometry Test \#4

Given triangle $A B C$. D lies on $B C$ such that $A D$ bisects $\angle B A C$. Given $A B=3, A C=9$, and $B C=$ 8. Find $A D$.

Exercise 5: 2009 AMC 12B \#16

Trapezoid $A B C D$ has $A D \| B C, B D=1, \angle D B A=23^{\circ}$, and $\angle B D C=46^{\circ}$. The ratio $B C: A D$ is $9: 5$. What is $C D$?
(A) $\frac{7}{9}$
(B) $\frac{4}{5}$
(C) $\frac{13}{15}$
(D) $\frac{8}{9}$
(E) $\frac{14}{15}$

Exercise 6: 1985 AHSME \#28

In $\triangle A B C$, we have $\angle C=3 \angle A, a=27$, and $c=48$. What is b ?

(A) 33
(B) 35
(C) 37
(D) 39
(E) not uniquely determined

Exercise 7:

In $\triangle A B C, A B=5, B C=4, A C=6$. Let D be a point on side $\overline{A B}$ such that $\overline{C D}$ bisects $\angle C$. Then what is the length of $\overline{C D}$?
(A) $\sqrt{5}$
(B) $2 \sqrt{2}$
(C) $2 \sqrt{3}$
(D) $3 \sqrt{2}$
(E) $2 \sqrt{5}$

HOMEWORK

Problem Set I

Problem 1:

Let $A B C$ be a triangle with angle bisector $A D$ with D on $B C$. If $B D=3, C D=4$, and $A B+A C=$ 14 , what is $A C-A B$?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

Problem 2:
In triangle $A B C, A B=20$ and $A C=10 . D$ is a point on $B C$ such that $B D=\frac{20 \sqrt{3}}{3}$ and $C D=\frac{10 \sqrt{3}}{3}$. What is the measure of $\angle B A D-\angle C A D$ in degrees?
(A) 0
(B) 5
(C) 10
(D) 15
(E) 30

Problem 3:

In $\triangle A B C, A B=7, A C=14$ and D is a point on side $B C$ such that $A D$ bisects $\angle B A C$. If $B D=5$, then what is the length of $C D$?
(A) 8
(B) 9
(C) 10
(D) 12
(E) 14

Problem 4:

In $\triangle A B C, A D$ is the bisector of $\angle A$ meeting side $B C$ at D, if $A B=10, A C=14$, and $B C=12$, then what is $B D$?
(A) 5
(B) $\frac{11}{2}$
(C) 6
(D) $\frac{2}{13}$
(E) 7

Problem 5:

In triangle $A B C, A B=13, B C=14, A C=15$. Let D denote the foot of the altitude from A to $\overline{B C}$ and let E denote the intersection of $\overline{B C}$ with the bisector of angle $B A C$. Which of the length of $D E$?
(A) 1
(B) $\frac{5}{4}$
(C) $\frac{3}{2}$
(D) 2
(E) $\frac{9}{4}$

Problem 6:

In $\triangle A B C, A C=B C$, and $\angle B=72^{\circ}$. Point D lies on $B C$ such that $A D$ bisects $\angle B A C$ and $C D=1$. What is the length of $B D$?
(A) 1
(B) $\frac{1}{2}$
(C) $\frac{\sqrt{5}-1}{2}$
(D) $\frac{\sqrt{3}+1}{2}$
(E) $\frac{\sqrt{5}+1}{2}$

Problem 7:

In $\triangle A B C, A B=4, B C=6, A C=5$. Let D be a point on side $\overline{A C}$ such that $\overline{B D}$ bisects $\angle B$. What is the length of $\overline{B D}$?
(A) $2 \sqrt{2}$
(B) $2 \sqrt{3}$
(C) $3 \sqrt{2}$
(D) $2 \sqrt{5}$
(E) $3 \sqrt{3}$

Problem 8:

In $\triangle A B C, A B=12, B C=14, A C=16$. The angle bisector of $\angle B A C$ intersects $\overline{B C}$ at D. What is the length of $\overline{A D}$?
(A) 12
(B) $\frac{25}{2}$
(C) $9 \sqrt{2}$
(D) $8 \sqrt{3}$
(E) 13

Problem 9:

In $\triangle A B C, A B=12, B C=14, A C=16$. The angle bisector of $\angle B A C$ intersects $\overline{B C}$ at D. The area of $\triangle A B D$ can be written as $m \sqrt{n}$, where m and n are positive integers and m is not divisible by the square of any prime. What is $m+n$?
(A) 24
(B) 25
(C) 26
(D) 27
(E) 28

Problem 10: 1959 AHSME \#28

In triangle $A B C, A L$ bisects angle A and $C M$ bisects angle C. Points L and M are on $B C$ and $A B$, respectively. The sides of triangle $A B C$ are a, b, and c. Then

$$
\frac{\overline{A M}}{\overline{M B}}=k \frac{\overline{C L}}{\overline{L B}}
$$

where k is:
(A) 1
(B) $\frac{b c}{a^{2}}$
(C) $\frac{a^{2}}{b c}$
(D) $\frac{c}{b}$
(E) $\frac{c}{a}$

Problem Set II

Problem 1: 1967 AHSME \#21

In right triangle $A B C$ the hypotenuse $\overline{A B}=5$ and leg $\overline{A C}=3$. The bisector of angle A meets the opposite side in A_{1}. A second right triangle $P Q R$ is then constructed with hypotenuse $\overline{P Q}=A_{1} B$ and leg $\overline{P R}=A_{1} C$. If the bisector of angle P meets the opposite side in P_{1}, the length of $P P_{1}$ is:
(A) $\frac{3 \sqrt{6}}{4}$
(B) $\frac{3 \sqrt{5}}{4}$
(C) $\frac{3 \sqrt{3}}{4}$
(D) $\frac{3 \sqrt{2}}{2}$
(E) $\frac{15 \sqrt{2}}{16}$

Problem 2: 1975 AHSME \#26

In acute $\triangle A B C$ the bisector of $\measuredangle A$ meets side $B C$ at D. The circle with center B and radius $B D$ intersects side $A B$ at M; and the circle with center C and radius $C D$ intersects side $A C$ at N. Then it is always true that
(A) $\measuredangle C N D+\measuredangle B M D-\measuredangle D A C=120^{\circ}$
(B) $A M D N$ is a trapezoid
(C) $B C$ is parallel to $M N$
(D) $A M-A N=\frac{3(D B-D C)}{2}$
(E) $A B-A C=\frac{3(D B-D C)}{2}$

Problem 3: 1981 AHSME \#25

In $\triangle A B C$ in the adjoining figure, $A D$ and $A E$ trisect $\angle B A C$. The lengths of $B D, D E$, and $E C$ are 2, 3 , and 6 , respectively. The length of the shortest side of $\triangle A B C$ is

(A) $2 \sqrt{10}$
(B) 11
(C) $6 \sqrt{6}$
(D) 6
(E) not uniquely determined by the given information

Problem 4: 1983 AHSME \#19

Point D is on side $C B$ of triangle $A B C$. If $\angle C A D=\angle D A B=60^{\circ}, A C=3$ and $A B=6$, then the length of $A D$ is
(A) 2
(B) 2.5
(C) 3
(D) 3.5
(E) 4

Problem 5: 1998 AHSME \#28

In triangle $A B C$, angle C is a right angle and $C B>C A$. Point D is located on $\overline{B C}$ so that angle $C A D$ is twice angle $D A B$. If $A C / A D=2 / 3$, then $C D / B D=m / n$, where m and n are relatively prime positive integers. Find $m+n$.
(A) 10
(B) 14
(C) 18
(D) 22
(E) 26

Problem 6: 2000 AMC 12 \#17

A circle centered at O has radius 1 and contains the point A. The segment $A B$ is tangent to the circle at A and $\angle A O B=\theta$. If point C lies on $\overline{O A}$ and $\overline{B C}$ bisects $\angle A B O$, then $O C=$

(A) $\sec ^{2} \theta-\tan \theta$
(B) $\frac{1}{2}$
(C) $\frac{\cos ^{2} \theta}{1+\sin \theta}$
(D) $\frac{1}{1+\sin \theta}$
(E) $\frac{\sin \theta}{\cos ^{2} \theta}$

Problem 7: 2008 AMC 12A \#20

Triangle $A B C$ has $A C=3, B C=4$, and $A B=5$. Point D is on $\overline{A B}$, and $\overline{C D}$ bisects the right angle. The inscribed circles of $\triangle A D C$ and $\triangle B C D$ have radii r_{a} and r_{b}, respectively. What is r_{a} / r_{b} ?
(A) $\frac{1}{28}(10-\sqrt{2})$
(B) $\frac{3}{56}(10-\sqrt{2})$
(C) $\frac{1}{14}(10-\sqrt{2})$
(D) $\frac{5}{56}(10-\sqrt{2})$
(E) $\frac{3}{28}(10-\sqrt{2})$

Problem 8: 2009 AMC 12B \#16

Trapezoid $A B C D$ has $A D \| B C, B D=1, \angle D B A=23^{\circ}$, and $\angle B D C=46^{\circ}$. The ratio $B C: A D$ is $9: 5$. What is $C D$?
(A) $\frac{7}{9}$
(B) $\frac{4}{5}$
(C) $\frac{13}{15}$
(D) $\frac{8}{9}$
(E) $\frac{14}{15}$

Problem 9: 2013 AMC 12B \#24

Let $A B C$ be a triangle where M is the midpoint of $\overline{A C}$, and $\overline{C N}$ is the angle bisector of $\angle A C B$ with N on $\overline{A B}$. Let X be the intersection of the median $\overline{B M}$ and the bisector $\overline{C N}$. In addition $\triangle B X N$ is equilateral with $A C=2$. What is $B N^{2}$?
(A) $\frac{10-6 \sqrt{2}}{7}$
(B) $\frac{2}{9}$
(C) $\frac{5 \sqrt{2}-3 \sqrt{3}}{8}$
(D) $\frac{\sqrt{2}}{6}$
(E) $\frac{3 \sqrt{3}-4}{5}$

Problem 10: 2016 AMC 12A \#12

In $\triangle A B C, A B=6, B C=7$, and $C A=8$. Point D lies on $\overline{B C}$, and $\overline{A D}$ bisects $\angle B A C$. Point E lies on $\overline{A C}$, and $\overline{B E}$ bisects $\angle A B C$. The bisectors intersect at F. What is the ratio $A F: F D$?

(A) $3: 2$
(B) $5: 3$
(C) $2: 1$
(D) $7: 3$
(E) $5: 2$

Problem Set III

Problem 1: 2016 AMC 12B \#17

In $\triangle A B C$ shown in the figure, $A B=7, B C=8, C A=9$, and $\overline{A H}$ is an altitude. Points D and E lie on sides $\overline{A C}$ and $\overline{A B}$, respectively, so that $\overline{B D}$ and $\overline{C E}$ are angle bisectors, intersecting $\overline{A H}$ at Q and P, respectively. What is $P Q$?

(A) 1
(B) $\frac{5}{8} \sqrt{3}$
(C) $\frac{4}{5} \sqrt{2}$
(D) $\frac{8}{15} \sqrt{5}$
(E) $\frac{6}{5}$

Problem 2: 2018 AMC 12B \#12

Side $\overline{A B}$ of $\triangle A B C$ has length 10 . The bisector of angle A meets $\overline{B C}$ at D, and $C D=3$. The set of all possible values of $A C$ is an open interval (m, n). What is $m+n$?
(A) 16
(B) 17
(C) 18
(D) 19
(E) 20

Problem 3: 1980 AHSME \#12

The equations of L_{1} and L_{2} are $y=m x$ and $y=n x$, respectively. Suppose L_{1} makes twice as large of an angle with the horizontal (measured counterclockwise from the positive x -axis) as does L_{2}, and that L_{1} has 4 times the slope of L_{2}. If L_{1} is not horizontal, then $m n$ is
(A) $\frac{\sqrt{2}}{2}$
(B) $-\frac{\sqrt{2}}{2}$
(C) 2
(D) -2
(E) not uniquely determined

Problem 4: 2017 NC State Mathematics Finals: Level III \#17

Consider the $\triangle M N P \cdot \overrightarrow{M R}$ bisects $\angle N M P, M N=2 y, N R=y, R P=y+1$, and $M P=3 y-1$. Find the value of y.
(A) 5
(B) 4
(C) 3
(D) 2
(E) 1

Problem 5: 2012 MathCounts National Team \#10
What is the slope of the line that bisects the acute angle formed by $y=\frac{4}{3} x$ and $y=\frac{12}{5} x$? Express your answer as a common fraction.

Problem 6: 2010 MathCounts National Sprint \#25
The sides of triangle $C A B$ are in the ratio of $2: 3: 4$. Segment $B D$ is the angle bisector drawn to the shortest side, dividing it into segments $A D$ and $D C$. What is the length, in inches, of the longer subsegment of side $A C$ if the length of side $A C$ is 10 inches? Express your answer as a common fraction.

Problem 7: 2013 MathCounts State Target \#8

In right $\triangle A B C$, shown here, $A C=24$ units and $B C=7$ units. Point D lies on $A B$ so that $C D \perp$ $A B$. The bisector of the smallest angle of $\triangle A B C$ intersects $C D$ at point E. What is the length of $E D$? Express your answer as a common fraction.

Problem 8: 1987 ARML Individual Test \#8

Triangle $A B C$ is reflected in its median $A M$ as shown. If $A E=6, E C=12, B D=10$, and $A B=$ $k \sqrt{3}$, compute k.

Problem 9: 2008 AMC 12A \#20

Triangle $A B C$ has $A C=3, B C=4$, and $A B=5$. Point D is on $\overline{A B}$, and $\overline{C D}$ bisects the right angle. The inscribed circles of $\triangle A D C$ and $\triangle B C D$ have radii r_{a} and r_{b}, respectively. What is r_{a} / r_{b} ?
(A) $\frac{1}{28}(10-\sqrt{2})$
(B) $\frac{3}{56}(10-\sqrt{2})$
(C) $\frac{1}{14}(10-\sqrt{2})$
(D) $\frac{5}{56}(10-\sqrt{2})$
(E) $\frac{3}{28}(10-\sqrt{2})$

Problem 10: 2017 CMIMC Geometry \#3
In acute triangle $A B C$, points D and E are the feet of the angle bisector and altitude from A respectively. Suppose that

$$
A C-A B=36 \text { and } D C-D B=24
$$

Compute $E C-E B$.

Problem Set IV (Bonus)

Problem 1: 2010 Princeton University Math Competition (PUMaC) Geometry A \#3
Triangle $A B C$ has $A B=4, A C=5$, and $B C=6$. An angle bisector is drawn from angle A, and meets $B C$ at M. What is the nearest integer to $100 \frac{A M}{C M}$?

Problem 2: 2010 Stanford Math Tournament Geometry Test \#4

Given triangle $A B C$. D lies on $B C$ such that $A D$ bisects $\angle B A C$. Given $A B=3, A C=9$, and $B C=$ 8. Find $A D$.

Problem 3: 2018 CMIMC Geometry \#2
Let $A B C D$ be a square of side length 1 , and let P be a variable point on $\overline{C D}$. Denote by Q the intersection point of the angle bisector of $\angle A P B$ with $\overline{A B}$. The set of possible locations for Q as P varies along $\overline{C D}$ is a line segment; what is the length of this segment?

Problem 4: 2016 CMIMC Geometry \#3
Let $A B C$ be a triangle. The angle bisector of $\angle B$ intersects $A C$ at point P, while the angle bisector of $\angle C$ intersects $A B$ at a point Q. Suppose the area of $\triangle A B P$ is 27 , the area of $\triangle A C Q$ is 32 , and the area of $\triangle A B C$ is 72 . The length of $\overline{B C}$ can be written in the form $m \sqrt{n}$ where m and n are positive integers with n as small as possible. What is $m+n$?

Problem 5: 2014 Purple Comet math Meet (High School) \#20
Triangle $A B C$ has a right angle at C. Let D be the midpoint of side $A C$, and let E be the intersection of $A C$ and the bisector of $\angle A B C$. The area of $\triangle A B C$ is 144 , and the area of $\triangle D B E$ is 8 . Find $A B^{2}$.

Problem 6: 2013 Harvard-MIT Math Tournament Guts Round \#14

Consider triangle $A B C$ with $\angle A=2 \angle B$. The angle bisectors from A and C intersect at D, and the angle bisector from C intersects $A B$ at E. If

$$
\frac{D E}{D C}=\frac{1}{3},
$$

compute

$$
\frac{A B}{A C}
$$

Problem 7: 2012 Harvard-MIT Math Tournament Team B \#1

Triangle $A B C$ has $A B=5, B C=3 \sqrt{2}$, and $A C=1$. If the altitude from B to $A C$ and the angle bisector of angle A intersect at D, what is $B D$?

Problem 8: 2009 AIME I \#5

Triangle $A B C$ has $A C=450$ and $B C=300$. Points K and L are located on $\overline{A C}$ and $\overline{A B}$ respectively so that $A K=C K$, and $\overline{C L}$ is the angle bisector of angle C. Let P be the point of intersection of $\overline{B K}$ and $\overline{C L}$, and let M be the point on line $B K$ for which K is the midpoint of $\overline{P M}$. If $A M=180$, find $L P$.

